On Transformation Optics based Cloaking

TING ZHOU Northeastern University

CIRM

Outline

- Inverse Problem and Invisibility
- 2 Singular ideal cloaking
 - Singular cloaking medium
- Regularized electromagnetic approximate cloaking
 - Regularization and discussion
 - Limiting Behavior at the Interface
- 4 2D electromagnetic/acoustic cloaking
 - Singular ideal cloaking for 2D Helmholtz equations
 - Regularization and the limiting behavior at the interface

Deflecting light

Black holes and optical white holes

Mirage

Fermat's principle: *minimize optical length in a medium with variable refractive index.*

Cloaking for acoustics

Inverse Problem and Invisibility Singular ideal cloaking

Transformation Optics based Cloaking

From Pendry et al's paper

- J. B. Pendry, D. Schurig and D. R. Smith (2006)
- U. Leonhard (2006)
- Transformation Optics and **Metamaterials**
- A. Greenleaf, M. Lassas and G. Uhlmann (2003)

Inverse Problem and Invisibility

Visibility: Inverse problems of EIT (Calderón problem)

Electrical Impedance Tomography (EIT)

Calderón problem:
$$\Lambda_{\gamma_1} = \Lambda_{\gamma_2} \Rightarrow \gamma_1 = \gamma_2$$
?

- Isotropic γ scalar: uniqueness results —- Visibility [Sylvester-Uhlmann, Nachman, ...]
- Anisotropic $\gamma = (\gamma^{ij})$ (pos. def. sym. tensor): non-uniqueness.

Transformation law and nonuniqueness

$$\int_{\Omega} \nabla u_f \cdot \gamma \nabla u_f \, dy \stackrel{x=\psi(y),\psi|_{\partial\Omega}=I}{=} \int_{\Omega} \nabla v_f \cdot \underbrace{\left(\frac{(D\psi)^T \gamma \, (D\psi)}{|\det(D\psi)|}\right) \circ \psi^{-1}}_{\psi_*\gamma} \nabla v_f \, dx$$
$$\int_{\partial\Omega} \Lambda_{\gamma}(f) f \, dS_y = \int_{\partial\Omega} \Lambda_{\psi_*\gamma}(f) f \, dS_x$$

DN-map:

$$\begin{cases} \nabla \cdot \gamma \nabla u_f = 0\\ u_f|_{\partial\Omega} = f\\ \hline \Lambda_{\gamma}(f) = \nu \cdot \gamma \nabla u_f|_{\partial\Omega} \end{cases}^{\nu_f = u_f \circ \psi^{-1}} \begin{cases} \nabla \cdot \psi_* \gamma \nabla v_f = 0\\ v_f|_{\partial\Omega} = f\\ \hline \Lambda_{\psi_*\gamma}(f) = \nu \cdot \psi_* \gamma \nabla v_f|_{\partial\Omega} \end{cases}$$

<u>Conclusion</u>: ψ : a diffeomorphism on Ω and $\psi | \partial \Omega = Id$.

$$\Lambda_\gamma = \Lambda_{\psi_*\gamma}$$

Cloaking for EIT

$$F: B_2 \setminus \{0\} \to B_2 \setminus \overline{B_1}$$

$$F(y) = \left(1 + \frac{|y|}{2}\right) \frac{y}{|y|}.$$

$$F|_{\partial B_2} = \text{Identity.}$$

Greenleaf-Lassas-Uhlmann (2003)

$$\begin{array}{l} \gamma = I : \text{Identity matrix in } B_2, \\ \tilde{\gamma} = \left\{ \begin{array}{l} F_* \gamma & \text{in } B_2 \backslash \overline{B_1} \\ \text{arbitrary } \gamma_a & \text{in } B_1 \end{array} \right\} \Rightarrow \overline{\Lambda_{\tilde{\gamma}} = \Lambda_{\gamma}}. \end{array}$$

- F_*I is anisotropic.
- Removable singularity argument.

Currents (vacuum space vs. cloaking)

All Boundary measurements for the homogeneous conductivity $\gamma = I$ and the conductivity $\tilde{\gamma} = (F_*I, \gamma_a)$ are the same

Analytic solutions for the currents

Based on work of Greenleaf-Lassas-Uhlmann, 2003

Singular Ideal Electromagnetic Cloaking

Wave theory of light: Electromagnetic waves and Maxwell's equations

$$\nabla \times E - i\omega \mu H = 0$$

$$\nabla \times H + i\omega \varepsilon E = J$$

(E, H): electromagnetic field $\mu(x)$: magnetic permeability

 $\varepsilon(x)$: electric permittivity

J(x): electric current source

Refractive index: $\sqrt{\mu\varepsilon}$.

What is invisibility?

Arbitrary object to be cloaked in D surrounded by the cloak $\Omega \setminus \overline{D}$ with electromagnetic parameters $(\tilde{\mu}(x), \tilde{\varepsilon}(x))$. We want to show that if Maxwell's equations are solved in Ω , the boundary information of solutions is the same as that of the case with $\mu = \varepsilon = Id$.

Invisibility and Cloaking

From Pendry et al's paper

- J. B. Pendry, D. Schurig and D. R. Smith (2006)
- U. Leonhard (2006)
- Transformation Optics and *Metamaterials*
- A. Greenleaf, M. Lassas and G. Uhlmann (2003)

Inverse Problem and Invisibility Singular ideal cloaking Regularized electromagnetic approximate cloaking

Metamaterials for electromagnetic cloaking

Invisibility cloak for 4 cm EM waves Schurig et al, Science 2006.

Metamaterials for acoustic cloaking

Zhang et al, PRL 2011

Tsunami cloaking

Broadband cylindrical cloak for linear surface waves in a fluid, M. Farhat et al, PRL (2008).

Electromagnetic waves in regular media

Time harmonic Maxwell's equations

$$\nabla \times E = i\omega\mu H \quad \nabla \times H = -i\omega\varepsilon E + J \quad \text{in } \Omega.$$

with permittivity $\varepsilon(x)$ and permeability $\mu(x)$.

Regular (Nonsingular) medium: ε = (ε^{ij}) and μ = (μ^{ij}) are pos. def. sym. matrices, that is, there exists C > 0 such that

$$\sum_{i,j} \mu^{ij}(x)\xi_i\xi_j \ge C|\xi|^2, \quad \sum_{i,j} \varepsilon^{ij}(x)\xi_i\xi_j \ge C|\xi|^2$$

for $\xi \in \mathbb{R}^n$ and $x \in \Omega$.

• Then $(E, H) \in H(\text{curl}) \times H(\text{curl})$.

Singular cloaking medium

Imaging and inverse problems with electromagnetic waves

• Boundary observation: Impedance map

$$\Lambda_{\mu,\varepsilon}:\,\nu\times E|_{\partial\Omega}\,\mapsto\,\nu\times H|_{\partial\Omega}.$$

• Inverse problem: Is $(\mu, \varepsilon) \mapsto \Lambda_{\mu,\varepsilon}$ injective? [Ola-Päivärinta-Somersalo], [Ola-Somersalo]: C^2 isotropic.

Transformation law for Maxwell's equations

Let $\psi: \Omega \to \Omega$ be a diffeomorphism.

• Pullback of fields by ψ^{-1} :

$$\tilde{E} = (\psi^{-1})^* E := (D\psi^T)^{-1} E \circ \psi^{-1}$$
$$\tilde{H} = (\psi^{-1})^* H := (D\psi^T)^{-1} H \circ \psi^{-1}$$
$$\tilde{J} = (\psi^{-1})^* J := [\det(D\psi)]^{-1} D\psi J \circ \psi^{-1}$$

• Push-forward of medium by ψ :

$$\begin{split} \tilde{\mu} &= \psi_* \mu := \left(\frac{(D\psi)^T \mu \ (D\psi)}{|\det(D\psi)|} \right) \circ \psi^{-1}, \\ \tilde{\varepsilon} &= \psi_* \varepsilon := \left(\frac{(D\psi)^T \varepsilon \ (D\psi)}{|\det(D\psi)|} \right) \circ \psi^{-1}. \end{split}$$

Then

$$\nabla\times \tilde{E}=i\omega\tilde{\mu}\tilde{H},\quad \nabla\times\tilde{H}=-i\omega\tilde{\varepsilon}\tilde{E}+\tilde{J}\quad \text{ in }\Omega$$

• Moreover, if $\psi|_{\partial\Omega} =$ Identity, we have $\Lambda_{\tilde{\mu},\tilde{\varepsilon}} = \Lambda_{\mu,\varepsilon}$

Singular cloaking medium

Electromagnetic cloaking medium

Cloaking medium

$$(\tilde{\mu}, \tilde{\varepsilon}) = \begin{cases} (F_*I, F_*I) & \text{in } B_2 \backslash \overline{B_1} \\ (\mu_a, \varepsilon_a) \text{ arbitrary } & \text{in } B_1 \end{cases}$$

• Heterogeneous, anisotropic and singular in the cloaking layer.

Singular cloaking medium

Transformation Optics for Rays

Singular cloaking medium

Singular cloaking medium

• 3D cloaking device medium in $B_2 \setminus \overline{B}_1$:

$$\widetilde{\mu} = \widetilde{\varepsilon} = F_*I = \boxed{2\frac{(|x|-1)^2}{|x|^2}\Pi(x)} + 2(I - \Pi(x))$$

where $\Pi(x) = \hat{x}\hat{x}^T = xx^T/|x|^2$ is the projection along the radial direction.

- Degenerate singularity at $|x| = 1^+$!
- v.s. *Non-singular (Regular) medium*: for some C > 0,

$$\sum_{i,j} \gamma^{ij}(x)\xi_i\xi_j \ge C|\xi|^2, \quad \xi \in \mathbb{R}^n, \ x \in \Omega$$

Finite energy solutions [Greenleaf-Kurylev-Lassas-Uhlmann]

Finite energy solution (FES) to Maxwell's equations for $(B_2, \tilde{\mu}, \tilde{\varepsilon})$:

 $\tilde{E}, \tilde{H}, \tilde{D} = \tilde{\varepsilon}\tilde{E}$ and $\tilde{B} = \tilde{\mu}\tilde{H}$ are forms in B_2 with $L^1(B_2, dx)$ -coefficients such that

$$\int_{B_2} \tilde{\varepsilon}^{ij} \, \tilde{E}_i \, \overline{\tilde{E}_j} \, dx < \infty, \qquad \int_{B_2} \tilde{\mu}^{ij} \, \tilde{H}_i \, \overline{\tilde{H}_j} \, dx < \infty,$$

Maxwell's equations hold in a neighborhood of ∂B_2 , and

$$\int_{B_2} (\nabla \times \tilde{h}) \cdot \tilde{E} - \tilde{h} \cdot i\omega \tilde{\mu} \tilde{H} \, dx = 0$$
$$\int_{B_2} (\nabla \times \tilde{e}) \cdot \tilde{H} + \tilde{e} \cdot (i\omega \tilde{e} \tilde{E} - \tilde{J}) \, dx = 0$$

for all $\tilde{e}, \tilde{h} \in C_0^{\infty}(B_2)$.

• Hidden boundary condition: $\nu \times \tilde{E}|_{\partial B_1^-} = \nu \times \tilde{H}|_{\partial B_1^-} = 0.$

• Then cloaking a source $(\tilde{J}|_{B_1} \neq 0)$ is problematic!

Regularized Electromagnetic Approximate Cloaking

Blow-up-a-small-ball regularization

• **Regularized** transformation that blows up $B_{\rho}(0 < \rho < 1)$ to B_1 and fixes the boundary ∂B_2 .

$$F_{\rho}(\mathbf{y}) := \left\{ \begin{array}{cc} \left(\frac{2(1-\rho)}{2-\rho} + \frac{|\mathbf{y}|}{2-\rho} \right) \frac{\mathbf{y}}{|\mathbf{y}|}, & \rho < |\mathbf{y}| < 2, \\ \frac{\mathbf{y}}{\rho}, & |\mathbf{y}| < \rho. \end{array} \right.$$

• Construct non-singular EM anisotropic material

$$(\tilde{\mu}_{\rho}, \tilde{\varepsilon}_{\rho}) := \begin{cases} ((F_{\rho})_*I, (F_{\rho})_*I), & 1 < |x| < 2, \\ (\mu_0, \varepsilon_0), & |x| < 1. \end{cases}$$

• Blow-up-a-small-ball regularization scheme for Helmholtz equations [Kohn-Onofrei-Vogelius-Weinstein]

Regularization and discussion Limiting Behavior at the Interface

Regularized cloaking medium

• Construct non-singular EM anisotropic material

$$(\tilde{\mu}_{\rho}, \tilde{\varepsilon}_{\rho}) := \begin{cases} ((F_{\rho})_*I, (F_{\rho})_*I), & 1 < |x| < 2, \\ (\mu_0, \varepsilon_0), & |x| < 1. \end{cases}$$

۲

$$(F_{\rho})_*I = \frac{\left((2-\rho)|x|-2+2\rho\right)^2}{(2-\rho)|x|^2}\Pi(x) + (2-\rho)(I-\Pi(x))$$

• Well-posedness: well-defined *H*(curl) solutions satisfying transmission problems in both physical space (cloaking device + cloaked region) and virtual space (pullback of physical space).

Inverse Problem and Invisibility Regularized electromagnetic approximate cloaking

Regularization and discussion

Virtual space vs. Physical space

- Is $\Lambda_{\tilde{\mu},\tilde{\varepsilon}} \approx \Lambda_{I,I}$? Yes and No!
- What is the limiting behavior (as $\rho \rightarrow 0$) of the EM waves in the physical space at the interface |x| = 1?

Regularization and discussion Limiting Behavior at the Interface

Transmission problems in physical and virtual spaces

Virtual space:

for
$$y \in B_2 \setminus \overline{B_\rho}$$
:
 $\nabla \times E_\rho^+ = i\omega H_\rho^+$
 $\nabla \times H_\rho^+ = -i\omega E_\rho^+ + J$

for
$$y \in B_{\rho}$$
:
 $\nabla \times E_{\rho}^{-} = i\omega((F_{\rho}^{-1})_{*}\mu_{0})H_{\rho}^{-}$
 $\nabla \times H_{\rho}^{-} = -i\omega((F_{\rho}^{-1})_{*}\varepsilon_{0})E_{\rho}^{-} + J$
 $\nu \times E_{\rho}^{+}|_{\partial B_{\rho}^{+}} = \nu \times E_{\rho}^{-}|_{\partial B_{\rho}^{-}}$
 $\nu \times H_{\rho}^{+}|_{\partial B_{\rho}^{+}} = \nu \times H_{\rho}^{-}|_{\partial B_{\rho}^{-}}$
 $\nu \times E_{\rho}^{+}|_{\partial B_{2}} = f$

Physical space:

$$\begin{split} & \text{for } x \in B_2 \backslash \overline{B_1} : \\ & \nabla \times \tilde{E}_{\rho}^+ = i \omega \tilde{\mu}_{\rho} \tilde{H}_{\rho}^+ \\ & \nabla \times \tilde{H}_{\rho}^+ = -i \omega \tilde{\varepsilon}_{\rho} \tilde{E}_{\rho}^+ + \tilde{J}, \\ & \text{for } x \in B_1 : \\ & \nabla \times \tilde{E}_{\rho}^- = i \omega \mu_0 \tilde{H}_{\rho}^- \\ & \nabla \times \tilde{H}_{\rho}^- = -i \omega \varepsilon_0 \tilde{E}_{\rho}^- + \tilde{J} \\ & \nu \times \tilde{E}_{\rho}^+ |_{\partial B_1^+} = \nu \times \tilde{E}_{\rho}^- |_{\partial B_1^-}, \\ & \nu \times \tilde{H}_{\rho}^+ |_{\partial B_1^+} = \nu \times \tilde{H}_{\rho}^- |_{\partial B_1^-}, \\ & \nu \times \tilde{E}_{\rho}^+ |_{\partial B_2} = f. \end{split}$$

Cloaking a passive medium: $\tilde{J} = 0$

Assume μ_0 and ε_0 are positive constants, $k = \sqrt{\mu_0 \varepsilon_0}$.

• Spherical expansion of *E*'s:

$$\tilde{E}_{\rho}^{-} = \varepsilon_0^{-1/2} \sum_{n=1}^{\infty} \sum_{m=-n}^{n} \alpha_n^m M_{n,k\omega}^m + \beta_n^m \nabla \times M_{n,k\omega}^m \quad \text{in } B_1,$$

$$E_{\rho}^{+} = \sum_{n=1}^{\infty} \sum_{m=-n}^{n} c_{n}^{m} N_{n,\omega}^{m} + d_{n}^{m} \nabla \times N_{n,\omega}^{m} + \gamma_{n}^{m} M_{n,\omega}^{m} + \eta_{n}^{m} \nabla \times M_{n,\omega}^{m} \quad \text{in } B_{2} \setminus \overline{B_{\rho}}.$$

• Expansion of *H*'s:

$$\tilde{H}_{\rho}^{-} = \frac{1}{ik\omega} \mu_0^{-1/2} \sum_{n=1}^{\infty} \sum_{m=-n}^{n} k^2 \omega^2 \beta_n^m M_{n,k\omega}^m + \alpha_n^m \nabla \times M_{n,k\omega}^m \quad \text{in } B_1,$$

$$H_{\rho}^{+} = \frac{1}{i\omega} \sum_{n=1}^{\infty} \sum_{m=-n}^{n} \omega^{2} d_{n}^{m} N_{n,\omega}^{m} + c_{n}^{m} \nabla \times N_{n,\omega}^{m} + \omega^{2} \eta_{n}^{m} M_{n,\omega}^{m} + \gamma_{n}^{m} \nabla \times M_{n,\omega}^{m},$$

Cloaking a passive medium: $\tilde{J} = 0$

Plug in to the boundary conditions and transmission conditions:

$$\begin{cases} c_n^m h_n^{(1)}(2\omega) + \gamma_n^m j_n(2\omega) = f_{nnn}^{(1)}, \\ d_n^m \mathcal{H}_n(2\omega) + \eta_n^m \mathcal{J}_n(2\omega) = 2f_{nm}^{(2)}. \end{cases} \\ \begin{cases} \rho c_n^m h_n^{(1)}(\omega\rho) + \rho \gamma_n^m j_n(\omega\rho) = \varepsilon_0^{-1/2} \alpha_n^m j_n(k\omega), \\ d_n^m \mathcal{H}_n(\omega\rho) + \eta_n^m \mathcal{J}_n(\omega\rho) = \varepsilon_0^{-1/2} \beta_n^m \mathcal{J}_n(k\omega). \end{cases} \\ \begin{cases} k c_n^m \mathcal{H}_n(\omega\rho) + k \gamma_n^m \mathcal{J}_n(\omega\rho) = \mu_0^{-1/2} \alpha_n^m \mathcal{J}_n(k\omega), \\ \rho d_n^m h_n^{(1)}(\omega\rho) + \rho \eta_n^m j_n(\omega\rho) = \mu_0^{-1/2} k \beta_n^m j_n(k\omega). \end{cases} \end{cases}$$

• Systems of linear equations for $X = (\alpha_n^m, \beta_n^m, c_n^m, d_n^m, \gamma_n^m, \eta_n^m)$

$$\mathcal{A}_{n,\rho,\omega,\mu_0,\varepsilon_0}X = b_f$$

Regularization and discussion Limiting Behavior at the Interface

Cloaking a passive medium: $\tilde{J} = 0$

Convergence order as $\rho \rightarrow 0$:

$$\begin{split} \gamma_n^m &= O(1), \, \eta_n^m = O(1); \, c_n^m = O(\rho^{2n+1}), \, d_n^m = O(\rho^{2n+1}); \\ \alpha_n^m &= O(\rho^{n+1}), \, \, \beta_n^m = O(\rho^{n+1}). \end{split}$$

$$\Lambda_{\tilde{\mu}_{\rho},\tilde{\varepsilon}_{\rho}} \to \Lambda_{I,I}$$

Inside B_1 ,

$$(\tilde{E}_{\rho}^{-},\tilde{H}_{\rho}^{-})\rightarrow 0$$

Cloaking a medium with a source: $\tilde{J} \neq 0$ **supported in** B_1

Given an internal current source \tilde{J} supported in B_{r_1} where $r_1 < 1$,

• Spherical expansion:

$$\tilde{E}_{\rho}^{-} = \varepsilon_{0}^{-1/2} \sum_{n=1}^{\infty} \sum_{m=-n}^{n} \alpha_{n}^{m} M_{n,k\omega}^{m} + \beta_{n}^{m} \nabla \times M_{n,k\omega}^{m} + p_{n}^{m} N_{n,k\omega}^{m} + q_{n}^{m} \nabla \times N_{n,k\omega}^{m}$$

for $\underline{r_1 < |x| < 1}$.

$$E_{\rho}^{+} = \sum_{n=1}^{\infty} \sum_{m=-n}^{n} c_{n}^{m} N_{n,\omega}^{m} + d_{n}^{m} \nabla \times N_{n,\omega}^{m} + \gamma_{n}^{m} M_{n,\omega}^{m} + \eta_{n}^{m} \nabla \times M_{n,\omega}^{m}$$

for $\underline{\rho} < |y| < 2$.

Cloaking a medium with a source: $\tilde{J} \neq 0$ **supported in** B_1

Convergence order as $\rho \rightarrow 0$:

$$\begin{split} \gamma_n^m &= O(1), \, \eta_n^m = O(1); \, c_n^m = O(\rho^{n+1}), \, d_n^m = O(\rho^{n+1}); \\ \alpha_n^m &= O(1), \, \beta_n^m = O(1). \end{split}$$

$$\Lambda_{\tilde{\mu}_{\rho},\tilde{\varepsilon}_{\rho}} \to \Lambda_{I,I}$$

Inverse Problem and Invisibility Singular ideal cloaking Regularized electromagnetic approximate cloaking

Regularization and discussion

Demonstration (passive)

Re
$$(\tilde{E}_{\rho})_1$$
 (sliced at $x = 0, 1, 2$), $\omega = 5$, $\varepsilon_0 = \mu_0 = 2$, $\rho = 1/6$.

ρ	0.1	0.05	0.01	0.005	0.002	0.001
$Er(\rho)$	0.1810	0.0139	8.42e - 05	1.02e - 06	6.42e - 07	7.97e - 08
r(ho)		3.703	3.173	3.044	3.020	3.009

Boundary errors and convergence order when $\omega = 5$, $\varepsilon_0 = \mu_0 = 2$.

Regularization and discussion Limiting Behavior at the Interface

Demonstration (active)

 $\begin{aligned} &\operatorname{Re}(\tilde{E}_{\rho})_{1} \text{ (sliced at} \\ &x=0,1,2), \, \omega=5, \\ &\varepsilon_{0}=\mu_{0}=2, \\ &\rho=1/12, \, \text{with a point} \\ & \text{ source.} \end{aligned}$

ρ	0.1	0.05	0.01	0.005	0.002	0.001
$Er(\rho)$	1.9787	0.3509	0.0114	0.0028	4.41e - 04	1.10e - 04
r(ho)		2.495	2.129	2.031	2.013	2.006

Boundary errors and convergence order $\omega = 5$, $\varepsilon_0 = \mu_0 = 2$, with a point source.

Regularization and discussion Limiting Behavior at the Interface

Resonance

Resonance and Cloak-busting inclusions

For a fixed cloaking scheme, i.e., fixed ρ > 0, there exists some frequency ω and cloaked medium (μ₀, ε₀) such that the transmission problems are **NOT well-posed**. Therefore, the boundary measurement Λ_{μ̃,ε̃} is significantly different from Λ_{I,I}.

$$\mu_0^{-1/2}\rho h_n^{(1)}(\omega\rho)\mathcal{J}_n(k\omega) - \varepsilon_0^{-1/2}k\mathcal{H}_n(\omega\rho)j_n(k\omega) = 0$$

- ω is the resonant frequency;
- (μ_0, ε_0) is called cloak-busting inclusion;

Regularization and discussion Limiting Behavior at the Interface

Demonstration (Resonance)

Boundary error $Er(\omega) = \nu \times H_{\rho}^+|_{\partial B_2} - \nu \times H|_{\partial B_2}$ for mode n = 1, when $\rho = 0.01$ and $\mu_0 = \varepsilon_0 = 2$, against frequency $\omega \in [1, 3]$ (Left: passive; Right: active).

Remedy to resonance: Cloaking with a lossy layer ¹.

¹[Kohn-Onofrei-Vogelius-Weinstein] for Helmholtz equations

Regularization and discussion Limiting Behavior at the Interface

Remedy: Lossy layer

• $F_{2\rho}$ blows up $B_{2\rho}$ to B_1 ,

$$F_{2\rho}(y) := \begin{cases} \left(\frac{2(1-2\rho)}{2-2\rho} + \frac{|y|}{2-2\rho}\right) \frac{y}{|y|}, & 2\rho < |y| < 2, \\ \frac{y}{2\rho}, & |y| < 2\rho. \end{cases}$$

• τ is the damping parameter (conductivity).

Regularization and discussion Limiting Behavior at the Interface

Demonstration (lossy)

Boundary error Er for mode n = 1 when $\rho = 0.01$ of lossy approximate cloaking (passive), against frequency $\omega \in [1, 10]$.

- Resonant frequencies disappear.
- Complex poles?
- Damping effect: τ depending on ρ .

Regularization and discussion Limiting Behavior at the Interface

Damping parameter τ

• Lossy regularization for Scalar optics and Acoustics (Helmholtz equations) (Kohn-Onofrei-Vogelius-Weinstein, Kohn-Nguyen).

$$\nabla \cdot \gamma \nabla u + k^2 q u = 0$$

lossy cloaking medium

$$(\tilde{\gamma}_{\rho}, \tilde{q}_{\rho}) = \begin{cases} ((F_{2\rho})_*I, (F_{2\rho})_*1) & 1 < |x| < 2\\ ((F_{2\rho})_*I, (F_{2\rho})_*(1 + ic_0\rho^{-2})) & 1/2 < |x| < 1\\ (\gamma_0, q_0) & |x| < 1/2 \end{cases}$$

where

$$F_*q := \frac{q}{\det(DF)} \circ F^{-1}$$

Then

$$\|\Lambda_{ ilde{\gamma}_
ho, ilde{q}_
ho} - \Lambda_{I,1}\| \lesssim \left\{egin{array}{cc} |\ln
ho|^{-1}, & ext{in} \ \mathbb{R}^2 \
ho, & ext{in} \ \mathbb{R}^3. \end{array}
ight.$$

Extreme case: Enhanced cloaking by lining

•
$$\tau = \infty \Rightarrow$$
 sound-soft lining [Liu]. Then

$$\|\Lambda_{ ilde{\gamma}_
ho, ilde{q}_
ho} - \Lambda_{I,1}\| \lesssim \left\{egin{array}{cc} |\ln
ho|^{-1}, & ext{in} \ \mathbb{R}^2 \
ho, & ext{in} \ \mathbb{R}^3. \end{array}
ight.$$

(High loss makes detection easier in infrared regime!)

• Finite-sound-hard layer [Liu]:

$$(\tilde{\gamma}_{\rho}, \tilde{q}_{\rho}) = \begin{cases} ((F_{2\rho})_* I, (F_{2\rho})_* 1) & 1 < |x| < 2\\ (\rho^{-2-\delta}(F_{2\rho})_* I, (F_{2\rho})_* (\alpha + i\beta)) & 1/2 < |x| < 1\\ (\gamma_0, q_0) & |x| < 1/2 \end{cases}$$

Then

$$\|\Lambda_{\tilde{\gamma}_{\rho},\tilde{q}_{\rho}}-\Lambda_{I,1}\|\lesssim \rho^n$$
 in $\mathbb{R}^n.$

• In FSH, let $\delta \to \infty$, we have sound-hard lining.

Normal limits at the interface due to an internal source²

²This is a joint work with Prof. Matti Lassas

Regularization and discussion Limiting Behavior at the Interface

Radiation at the interface due to the internal source

- Given a current source \tilde{J} supported on B_{r_1} for $r_1 < 1$. No resonance.
- As ρ → 0, degenerate singularity arises at ∂B₁⁺.
- Consider the limit of $\hat{x} \cdot \tilde{E}_{\rho}^+$ as $\rho \to 0^+$.

Regularization and discussion Limiting Behavior at the Interface

Hint

Formally

$$\int_{B_{2/(2-\rho)}\setminus B_1} |\hat{x} \cdot \tilde{E}_{\rho}^+|^p \, dx = \int_{B_{2\rho}\setminus B_{\rho}} (2-\rho)^p |\hat{y} \cdot \frac{E_{\rho}^+}{\rho}|^p |\det(DF_{\rho})| \, dy$$

$$\downarrow$$
spherical expansion of E_{ρ}^+

$$\begin{cases} = O(\rho^{-1}) & p = 2, \\ \le O(1) & p = 1. \end{cases}$$

suggesting a superposition of Delta functions at the interface!

Regularization and discussion Limiting Behavior at the Interface

Distributional limits

Theorem [Lassas-Z]

$$\tilde{E}_{\rho} \stackrel{\rho \to 0}{\rightharpoonup} \tilde{E} + \alpha[\tilde{J}] \delta_{\partial B_{1}}, \quad \tilde{H}_{\rho} \stackrel{\rho \to 0}{\rightharpoonup} \tilde{H} + \beta[\tilde{J}] \delta_{\partial B_{1}}$$

where

$$(\tilde{E}, \tilde{H}) = \begin{cases} (F_*E, F_*H) & 1 < |x| < 2, \\ (E_0, H_0) & |x| < 1 \end{cases}$$

with (E, H) denotes the background waves in the vacuum space and

$$\begin{cases} \nabla \times E_0 = i\omega\mu_0 H_0, \quad \nabla \times H_0 = -i\omega\varepsilon_0 E_0 \quad \text{on } B_1 \\ \nu \cdot E_0|_{\partial B_1} = \nu \cdot H_0|_{\partial B_1} = 0 \end{cases}$$

• extraordinary surface voltage effect [Zhang etc.].

Two dimensional approximate cloaking and non-local (pseudo-differential) boundary conditions

Cloaking for scalar optics and acoustics: Helmholtz equations

• The Helmholtz equation for acoustics or scalar optics, with a source term p, inverse of the anisotropic mass density $\sigma = (\sigma^{jk})$ and the bulk modulus λ

$$\lambda \nabla \cdot \sigma \nabla u + \omega^2 u = p \quad \text{in } \Omega.$$

- Dirichlet to Neumann map: $\Lambda_{\sigma,\lambda}: u|_{\partial\Omega} \mapsto \nu \cdot \sigma \nabla u|_{\partial\Omega}$.
- Cloaking medium

$$(\tilde{\sigma}, \tilde{\lambda}) = \begin{cases} (F_*I, F_*1) & 1 < |x| \le 2\\ (\sigma_a, \lambda_a) \text{ arbitrary } & |x| \le 1 \end{cases}$$

where $F_*\lambda(x) := [\det(DF)\lambda] \circ F^{-1}(x)$. • $\tilde{u}^{"} = "u \circ F^{-1}$ in $B_2 \setminus \overline{B_1}$.

Singular ideal cloaking for 2D Helmholtz equations Regularization and the limiting behavior at the interface

Singular ideal cloaking medium in \mathbb{R}^2

• Cloaking layer: in $B_2 \setminus \overline{B_1}$

$$\tilde{\sigma} = F_*I = \boxed{\frac{|x| - 1}{|x|}} \Pi(x) + \boxed{\frac{|x|}{|x| - 1}} (I - \Pi(x))$$
$$\tilde{\lambda} = F_*1 = \frac{|x|}{4(|x| - 1)}$$

• Both degenerate and blow-up singularities at $|x| = 1^+$!

Singular ideal cloaking for 2D Helmholtz equations Regularization and the limiting behavior at the interface

Truncation based regularization scheme

• **Regularized** medium with regularization parameter 1 < R < 2

$$(\tilde{\sigma}_R, \tilde{\lambda}_R) = \begin{cases} (\tilde{\sigma}, \tilde{\lambda}) & |x| > R \\ (\sigma_a, \lambda_a) & |x| \le R \end{cases}$$

• We are interested in the limiting behavior of the solution near the interface when *an internal source is present*.

Cloaking a homogeneous medium with an internal source

Suppose (σ_a, λ_a) is constant. Set $\kappa^2 = (\sigma_a \lambda_a)^{-1}$ and $\rho = F^{-1}(R)$ • Physical space:

$$(\tilde{\lambda}\nabla\cdot\tilde{\sigma}\nabla+\omega^2)u_R^+=p,\quad\text{in }B_2\backslash\overline{B_R}$$
$$(\Delta+\kappa^2\omega^2)u_R^-=\kappa^2p\quad\text{in }B_R$$

• Virtual space: $v_R^+ = u_R^+ \circ F$,

$$(\Delta + \omega^2)v_R^+ = p \circ F \quad \text{in } B_2 \setminus \overline{B_{\rho}}$$

• Transmission conditions and boundary conditions:

$$\begin{aligned} v_R^+|_{\partial B_\rho^+} &= u_R^-|_{\partial B_R^-}, \quad \rho \partial_r v_R^+|_{\partial B_\rho^+} &= \kappa R \partial_r u_R^-|_{\partial B_R^-}, \\ v_R^+|_{\partial B_2} &= f. \end{aligned}$$

Cloaking a homogeneous medium with an internal source

Given $p \in C^{\infty}(\mathbb{R}^2)$ with $\operatorname{supp}(p) \subset B_{R_0}$ $(0 < R_0 < 1)$ and $\operatorname{suppose} f = 0$ on ∂B_2

• Spherical expansions:

$$u_{R}^{-}(\tilde{r},\theta) = \sum_{n=-\infty}^{\infty} (a_{n}J_{|n|}(\kappa\omega\tilde{r}) + p_{n}H_{|n|}^{(1)}(\kappa\omega\tilde{r}))e^{in\theta}, \quad \tilde{r} \in (R_{0},R)$$

$$v_R^+(r,\theta) = \sum_{n=-\infty}^{\infty} (\frac{b_n J_{|n|}(\omega r)}{+ c_n H_{|n|}^{(1)}(\omega r)}) e^{in\theta}, \quad r \in (\rho,2)$$

• Linear system about a_n , b_n and c_n by the transmission conditions and boundary condition.

$$a_{n} = \frac{R(H_{|n|}^{(1)})'(\kappa\omega R)l_{1} - \rho H_{|n|}^{(1)}(\kappa\omega R)l_{2}}{D_{n}}p_{n} := \frac{A_{n}}{D_{n}}p_{n}$$

$$b_{n} = \frac{R\{(H_{|n|}^{(1)})'(\kappa\omega R)J_{|n|}(\kappa\omega R) - J_{|n|}'(\kappa\omega R)H_{|n|}^{(1)}(\kappa\omega R)\}H_{|n|}^{(1)}(3\omega)}{D_{n}}p_{n}$$

$$c_{n} = -\frac{R\{(H_{|n|}^{(1)})'(\kappa\omega R)J_{|n|}(\kappa\omega R) - J_{|n|}'(\kappa\omega R)H_{|n|}^{(1)}(\kappa\omega R)\}J_{|n|}(3\omega)}{D_{n}}p_{n}$$

where

$$D_n = \frac{-i2^n \omega^{-n-1}(n-1)!}{\pi} J_n(3\omega) \left[\kappa^2 \omega R J'_n(\kappa \omega R) + n J_n(\kappa \omega R) \right] \rho^{-n} + O(\rho^{-n+1}),$$

Observations for resonant case

Resonant frequency ω for mode n

- \iff cloak-busting inclusion limit $\kappa = (\sigma_0 \lambda_0)^{-1/2}$
- $\iff |a_n|, |b_n|, |c_n| \to \infty \text{ as } R \to 1^+(\rho \to 0^+) (n \ge 1)$

$$\iff \left| \left[\omega \kappa^2 R(J_{|n|})'(\kappa \omega R) + |n| J_{|n|}(\kappa \omega R) \right] \right|_{R=1} = 0$$

 $\iff V_{\pm n}(\tilde{r},\theta) := J_{|n|}(\kappa \omega \tilde{r})e^{\pm in\theta}$ are eigenfunctions of

$$(\Delta + \kappa^2 \omega^2) V = 0$$
 in B_1 ,
 $[\kappa \tilde{r} \partial_{\tilde{r}} V + (-\partial_{\theta}^2)^{1/2} V]|_{\tilde{r}=1^+} = 0.$

Singular ideal cloaking for 2D Helmholtz equations Regularization and the limiting behavior at the interface

Non-local boundary conditions

$$[\kappa \tilde{r} \partial_{\tilde{r}} V + (-\partial_{\theta}^2)^{1/2} V]|_{\tilde{r}=1^+} = 0.$$

Operator A := (-∂²_θ)^{1/2} is a <u>pseudo-differential operator</u>: Square root of positive laplacian over S¹.
 Symbol of *P*:

$$\widehat{Pu} = \operatorname{Sym}(P)\widehat{u}$$
$$\operatorname{Sym}(\nabla) = -i\xi, \quad \operatorname{Sym}(\Delta) = -|\xi|^2, \quad \xi \in \mathbb{R}^n$$
$$\operatorname{Sym}(\mathcal{A}) = |\xi|$$

• A non-local boundary condition:

$$\mathcal{A}u = \mathcal{F}^{-1}(|\xi|\widehat{u})$$

Non-resonant result: non-local boundary conditions

Suppose ω and (σ_a, λ_a) satisfy

$$\begin{cases} \left[\omega\kappa^2 R(J_{|n|})'(\kappa\omega R) + |n|J_{|n|}(\kappa\omega R)]\right]_{R=1} \neq 0, \\ J_{|n|}(2\omega) \neq 0, \end{cases} \quad \text{for } n \in \mathbb{Z}.$$

Theorem [Lassas-Z]

As $R \to 1^+$, u_R (the solution in the physical space) converges uniformly in compact subsets of $B_2 \setminus \partial B_1$ to the limit u_1 satisfying

$$(\Delta + \kappa^2 \omega^2) u_1 = \kappa^2 p \quad \text{in } B_1,$$

$$[\kappa \partial_{\bar{r}} u_1 + (-\partial_{\theta}^2)^{1/2} u_1]\Big|_{\partial B_1} = 0.$$

• possiblely due to the fact that the phase velocity of the waves in the invisibility cloak approaches infinity near the interface, even though the group velocity stays finite.

Thank you for your attention!