Luminy Lecture 2: Spectral rigidity of the ellipse
joint work with Hamid Hezari

Luminy Lecture
April 12, 2015



Isospectral rigidity of the ellipse

The purpose of this lecture is to prove that ellipses are spectrally
rigid among C* domains with their Zy x Z, symmetry, i.e. ellipses
do not admit isospectral deformations €; through smooth domains
with two symmetries.

Good feature: the competing domains are smooth, not just real
analytic;

Bad feature: the symmetry (is it necessary or just a technical
artifice?)

This is a step in the direction of the

Conjecture Ellipses are spectrally determined: one can hear the
shape of an ellipse .



Elliptical billiards

Elliptical billards are very special and it is conjectured (originally by
Birkhoff) that they are the unique billiard tables for which the
billards are completely integrable.

One can find movies of elliptical billiards on the website
http://cage.ugent.be/ hs/billiards/billiards.html

We start with background on billiards.



Billard flow and billiard map on domains with boundary

To define the geodesic or billiard flow G! on a domain Q with
boundary 0f2, we need to specify what happens when a geodesic
intersects the boundary.

We denote by S*Q2 the unit tangent vectors to the interior of Q
and by 57 02 the manifold with boundary of inward pointing unit
tangent vectors to Q with footpoints in 9Q. The boundary consists
of unit vectors tangent to 9. The billiard flow G! is a flow on
S$5*Q U 5309, defined as follows: When an interior geodesic of €2
intersects the boundary 02 transversally, it is reflected by the usual
Snell law of equal angles. Such trajectories are called (transveral)
reflecting rays. The complications occur when a geodesic intersects
the boundary tangentially in S*0X2.



Convex versus non-convex domains, creeping rays

Convex domains are simpler than non-convex domains, since
interior rays cannot intersect the boundary tangentially. It should
be noted that geodesics of 02 with the induced metric are
important billiard trajectories. They are limits of ‘creeping rays’,
i.e. rays with many small links (interior segments) which stay close
to 09 In particular, the boundary of a convex plane domain is a
closed billiard trajectory.



Billiard map or boundary map

The set 5700 of inward pointing unit vectors behaves like a global
cross section to the billiard flow. It is then natural to reduce the
dimension by defining the billiard ball map /5 : B*(02) — B*(09),
where B*(09) is the ball bundle of the boundary. We first identify
Si,082 =~ B*(082) by adding to a tangent (co)vector ) € B;05 of
length < 1 a multiple cvg of the inward point unit normal v4 to
form a covector in Sng. The image ((q, v) is then defined to be
the tangential part of the first intersection of G*(q,n + cvg) with
0f2. The billiard map is symplectic with respect to the natural
symplectic form on B*(09Q).



Billiard map of a plane domain

An equivalent description of the billiard map of a plane domain is
as follows. Let g € 9Q and let ¢ € (0, 7). The point (g, )
corresponds to an inward pointing unit vector making an angle ¢
with the tangent line, with ¢ = 0 corresponding to a fixed
orientation (say counter-clockwise). The billiard map is then
B(g,») = (q',¢") where (g', ¢') are the parameters of the reflected
ray at the first point of intersection with the boundary. The map
is then area preserving with respect to sin pds A d.



Billiards in a stadium, cardiod and annulus
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Length spectrum of a manifold with boundary

In the case of Euclidean domains, or more generally domains where
there is a unique geodesic between each pair of boundary points,
one can specify a billiard trajectory by its successive points of
contact qo, g1, q2, . .. with the boundary. The n-link periodic
reflecting rays are the trajectories where g, = qg for some n > 1.
The point qo, - - ., gn is then a critical point of the length functional

n—1
L(q0,--+Gn) = Y_ |ai+1 — il
i=0

on (0Q)".



Length spectrum of a manifold with boundary

In the boundary case, the length spectrum Lsp(Q) is the set of
lengths of closed billiard trajectories; it is not discrete, but rather
has points of accumulation at lengths of trajectories which have
intervals along the boundary. In the case of convex plane domains,
e.g., the length spectrum is the union of the lengths of periodic
reflecting rays and multiples of |0Q2|. According to the standard
terminology, Lsp(M, g) is the set of distinct lengths, not including
multiplicities, and one refers to the the length spectrum repeated
according to multiplicity as the extended length spectrum.



Elliptical billiards are completely integrable

Let E, 5 be the ellipse :—2 + }I;—i = 1. lts foci are at =v/a? — b?
where a > b.

Let 0 < Z < b, and define the confocal ellipse

PROPOSITION

Let p € E, and let £,{' be two lines from p which are tangent to
Ez. The {,¢' make equal angles with v, the normal at p.
Similarly for the confocal hyperbolae with —e < Z < 0.



Orbits through a focus

There is a bouncing ball orbit on the major axis through the two
foci.

Now consider another billiard trajectory starting at some point
p € OE, p and going through a focus, say F».

LEMMA

An orbit that goes through one focus will go infinitely often
through both foci and will asymptotically tend to the bouncing ball
orbit through the two foci.



Elliptical billiards are completely integrable

Both the billiard flow and billiard map of the ellipse are completely
integrable. l.e. there exist foliations of $*Q by invariant tori for ®*
and of B*91Q for S.



Caustics of elliptical billiards




Phase portrait of billiard map




Invariant curves of periodic orbits

Except for certain exceptional trajectories, the periodic points of
period T form Lagrangian tori in $*Q, which intersect B*02 in
invariant curves for .

The exceptions are the two bouncing ball orbits through the
major/minor axes and the trajectories which intersect the foci or
glide along the boundary.



Periodic orbits of elliptical billiards come in one-parameter
families




Spectral rigidity of an ellipse

Our main result is the infinitesimal spectral rigidity of ellipses
among C* plane domains with the symmetries of an ellipse. We
orient the domains so that the symmetry axes are the x-y axes.
The symmetry assumption is then that ps is invariant under
(x,y) = (£x, £y).

Before stating the result, we review the definition.



Isospectral deformation

An isospectral deformation of a plane domain Qg is a
one-parameter family €25 of plane domains s.th. the SpecgA; is
constant (including multiplicities) for a fixed boundary condition
B.

We assume that Qs = ¢5(€0) where @5 is a one-parameter family
of diffeomorphisms of a ball containing €g. Also let X = dc‘,is. The
normal component of X on 09 is denoted Xj.




Deformations

For expository clarity, we think of X as a normal vector field
p(q)vg on 0. We then think of 0€; as the image under the map

x € 0 — x + ps(X)vx, (1)

where ps € C1([0, sp], C>°(0Q)). The first variation is defined to

be H(x) = 3p (x) = &ls—ops(x).



Infinitesimal rigidity

An isospectral deformation is said to be trivial if Qs = Qq (up to
isometry) for sufficiently small s. A domain Q is said to be
spectrally rigid if all isospectral deformations are trivial.

Even if the domains Qs or the ps(x) are C* for each s, we need to
consider the dependence of ps(x) in s.

A deformation is said to be a C! deformation through C*
domains if each Qs is a C> domain and the map s — Qs is C1.



Spectral rigidity of an ellipse

THEOREM

Suppose that Qq is an ellipse, and that Qg is a C' Dirichlet (or
Neumann) isospectral deformation of Qg through C* domains
with Zo X Zy symmetry. Let ps be as in (1). Then p = 0.

Consequently, there exist no non-trivial real analytic curves Q; of
C™> of domains with the spectrum of an ellipse.



Infinitesimal rigidity versus rigidity

Indeed, all isospectral deformations would have to be “flat” at
e =0.

COROLLARY

Suppose that Qq is an ellipse, and that s — Qs is a C* Dirichlet
(or Neumann) isospectral deformation through Zy x Z symmetric
C> domains. Then ps must be flat at s = 0.



C™ and not analytic

The main advance is that the domains Qg are allowed to be C*
rather than real analytic. Much less than C* could be assumed for
the domains s, e.g. C® might be enough.

It would be desirable to remove the symmetry assumption (to the
extent possible), but symmetry seems quite necessary for the
argument.

Much of the argument is completely general— and applies to any
convex plane domain. Only the very last step involves ellipses.



Outline of proof

1. Hadamard variational formula for the Diriclet (resp. Neumann)
wave kernel cos ty/Ag) under variation of the boundary, and in
particular for its (regularized) trace. This is completely general-any
domain, any manifold, any dimension.

2. Proof that § Tr cos t\/Apg) has co-normal singularities at lengths
of periodic transversal reflecting rays. Again, completely general.

3. Symbol at special lengths is an Abel transform.
Guillemin-Melrose: vanishing of Abel transform at special lengths
implies rigidity. Only this step uses the ellipse.



Notation

Below, we denote the perimeter of Q by |09|. We also denote by
Lsp(Q2) the length spectrum of Q, i.e. the set of lengths of closed
billiard trajectories.

By Lsp(£2p) we mean the length spectrum of the ellipse, i.e. the
set of lengths of periodic billiard trajectories. They come in one
dimensional families, which intersect B*9€)g in invariant curves I.
There is a natural Leray measure on each invariant curve of
periodic orbits which we denote by dur.



Billiards

We denote by ®f: $*Q — S*Q the generalized geodesic flow (or
broken billiard flow) of the ellipse Qg, and we denote by

B B*0Qy — B*08)y the associated billiard map. The broken
geodesic flow extends by homogneneity (degree one) to T*Q — 0.
We denote the Hamiltonian vector field of the Euclidean norm
function g by H,.



Wave trace of an ellipse

if Q is isospectral to an ellipse &, then the wave trace singularities
at lengths of closed billiard trajectories must be the same as for the
ellipse. The wave trace for the ellipse has the form,

Trcosty/Ag = ep(t Z er(t (2)

where ey(t) = G, Vol(M,g) (t +i0)"2+ ... at t = 0, where {T}
runs over the connected components of the set of periodic billiard
trajectories,where Ly is the length of the periodic trajectories in
the component 7, and where

er = crs(t—Ly+i0)F tcpa(t—Lr+i0) 3 +.... (3)

In the non-degenerate case, the leading exponent would be —1, not
-3/2.



Proof: Hadamard variational formula for trace of wave
group

PROPOSITION

For each T € Lsp(SQg) for which all billiard trajectories are
transverse reflecting rays, there exist constants Cr independent of
p such that, near T, the leading order singularity is

o Tr e’.t‘/Z

~ it Z Cr/p'yd,ur (t—T+iO)_g,

Milr=

where the sum is over the sets I of points on periodic trajectories
of period T; ~y is a certain function.



Level sets of action

The fixed point set of a given period T is a certain level set
{l = at} of the Zy x Zs-invariant Hamiltonian on B*9<y,

| := p3 + ¢ cos® 0.

The level sets {/ = a} are S-invariant curves and up to the
Zy x Zp symmetry they are irreducible invariant curves, i.e. are not
unions of invariant components.



Leray form

There is a natural invariant measure du, on each component of
{I = a}, namely the Leray quotient measure du, = dﬁfﬂdpﬁ of the
symplectic area form by dI. They are invariant under the Hamilton
flow of / and under the billiard map .

In the case of an ellipse, the fixed point sets are clean fixed point

sets for ®f in T*Q, resp. for 8 in B*9Q (Guillemin-Melrose).




|deas of proof, Il: principal symbol of HD variation of wave
trce

LEMMA

Let Qg be an ellipse, and T € Lsp(2o) with T not a multiple of
|02|. Then the principal symbol of Trp'(A_% U)b(t) att =T is
given by [, —o PV dlia, in the Dirichlet case, where dy, is the
Leray measure on {I = a}.



A kind of length spectral simplicity

PROPOSITION
(Guillemin-Melrose): Let To = |0S20|. Then for every interval
(mTo —e,mTy) for m=1,2,3,... there exist infinitely many

periods T € Lsp(Qg) for which Tt is the union of two invariant
curves which are mapped to each other by 6 — 7w — 0.



Corollary for wave trace coefficients

Since we assume p to have the same symmetry, we obtain:

COROLLARY
If ¢ is the velocity of an isospectral deformation, then

//wdurzo
rr

for each T for which T+ is the union of two invariant curves which
are mapped to each other by 8 — m — 6.



Proof of Theorem

The remainder of the proof is the same as one of
Guillemin-Melrose.

PROPOSITION

The only Zs X Zy invariant function p satisfying the equations of
Corollary 8 is p = 0.

First, we may assume p = 0 at the endpoints of the major/minor
axes, since the deformation preserves the Zy x Zy symmetry and
we may assume that the deformed bouncing ball orbits are aligned
with the original ones. Thus p(4+/a) = p(£vb) = 0.



Injectivity of an Abel transform

The Leray measure may be explicitly evaluated. By a change of
variables with Jacobian J, the integrals become

> p(t) v J(t)dt
2 Vt—(b—2)

for an infinite sequence of Z accumulating at b. Since 0 < a < b,
the function F(Z) is smooth in Z for Z near b.

F(Z) = (4)



Injectivity of an Abel transform

It vanishes infinitely often in each interval (b — €, b), hence is flat
at b. The kth Taylor coefficient at b is

b
FOE) = [ 3(0) 1 Je)e e =0, (5)

Since the functions t~* span a dense subset of CJa, b]), it follows
that p =0.



Details of HD variation of wave trace

THEOREM

Let Qo C R" be a C*° Euclidean domain with the property that
the fixed point sets of the billiard map are clean. Then, for any C*
variation of Qg through C* domains )., the variation of the wave
traces 0 Tre!™Y =8¢ with Dirichlet (or Neumann) boundary
conditions is a classical co-normal distribution for t # m|0SQy|

(m € Z) with singularities contained in Lsp(€y). For each

T € Lsp(Qg) for which the set I 1 of periodic points of the billiard
map B of length T is a d-dimensional clean fixed point set
consisting of transverse reflecting rays, there exist non-zero
constants Cr independent of p such that, near T, the leading order
singularity is

5Treitm~</t Z Cr/p’ydur> (t—T+i0)"22
ML=

ND.

modulo lower order singularities.



Applications to deformations of the ellipse

For any C! variation of an ellipse through C> domains Q, the
leading order singularity of the wave trace variation is,

6 Tr V=8 ~ (it Z Cr/ﬁV er) (t— T+i0)_%7
re=7 7T

modulo lower order singularities, where the sum is over the
components I of the set [+ of periodic points of § of length T.



Hadamard variational formula for wave traces

Consider the Dirichlet (resp. Neumann) eigenvalue problems for a
one parameter family of smooth Euclidean domains Q. C R”",

—ABEWJ'(E) = )\JZ(E)WJ'(G) in Qe,

(6)
BWj(c) =0,

where the boundary condition B could be BV;(e) = V;(€)|aq.
(Dirichlet) or 0, Vj(€)|an. (Neumann). Here, Aj(€) are the
eigenvalues of A, enumerated in order and with multiplicity, and
0y, is the interior unit normal to .. We do not assume that W;(e)
are smooth in €. We now review the Hadamard variational formula
for the variation of Green's kernels, and adapt the formula to give
the variation of the (regularized) trace of the wave kernel.



Notation

We denote by Ug(t) = e'®V =28 the wave group of Q. with
boundary conditions B. We could as easily (or more easily) work
with

Es(t) = cos (tv/—Agy), sB(t):S‘i”Et_ﬁ V;BABE). (7)

Since the boundary conditions are fixed in the deformation, we
often omit the subscript for them, and only include it when the
formulae depend on the choice. We recall that Ug(t) has a
distribution trace as a tempered distribution on R. That is,

= Jp A(t)Ug(t)dt is of trace class for any p € C5°(R).



Notation

We further denote by dS the surface measure on the boundary 9Q
of a domain Q, and by ru = u|sq the trace operator. We further
denote by rPu = 0,ulsq the analogous Cauchy data trace for the
Dirichlet problem. We simplify the notation for the following
boundary traces K”(q, q') € D'(9Q x 9Q) of a Schwartz kernel
K(x,y) € D'(R" x R") (or more precisely a distribution defined in
a neighborhood of 9Q x 9Q): K*(q,q’) is given for D reps. N BC
by

(rgr2K)(a,q") = (rgrq Ny Ny, K) (a, '),
(rgrg K)(a.q") = (V§ Vgrarg K)(a,q') = (rqrg BxK)(a,9),

Here, the subscripts g, g’ refer to the variable involved in the
differentiating or restricting. Also, N, is any smooth vector field in
Q extending v.



Notation

We are principally interested in K(x,y) = (—AX7B)_%UB(t,X,y).
In the Dirichlet, resp. Neumann, case then we have,

(—Ax8)"2Us)%(t,q,q)

_1
= rPr2(—=Dep)2Up(t,q,q'), resp.

1 1
v;—v;:rqu’(_AXW)_E UN(tv q, q/) - rqu'((_AX,N)2 UN)(t7 q, ql)'



HD variation of the wave trace

LEMMA
The variation of the wave trace with boundary conditions B is
given by,

§ Tr Up(t) = 'Qt/m ((—Ag)"2Ug)(t, 4. 9)p(q)dg.

In particular,

t .
5 Tr Es(t)=—5 | S(t,q,9)p(q)dq.
0

We summarize by writing,

it ) _1
6 Tr Us(t) = 3 Tron,p((~Ae) 2 Ug)®.



Classical HD variational formulae

In the Dirichlet case, the classical Hadamard variational formulae
states that, under a sufficiently smooth deformation €2,

B, .
dGp(\, x, ) / a—GD (A, x, q)a Gp(X, q.y)p(q) dq.
90, 12 -



Proof cont.

We derive the Hadamard variational formulae for wave traces from
that of the Green's function by using the identities,

)\RB()\):/()OOe_i’\tEB(t)dt, 9 sut) = Es(t) ()

dt
integrating by parts and using the finite propagation speed of
Sg(t) to eliminate the boundary contributions at t = 0, c0. It
follows that

Re()\) = i/ooo e At Sp(t)dt. (10)



Singularities of Hadamard variation of trace

We now study the singularity expansion of ¢ Tre/tV =4«
In the Dirichlet case,

Troap((—Dp) " 2Up)® = m p A (riraNy, Ny (—A) 2 Up(t, x, ),

(1)
where N, is any smooth vector field in €2 extending v. Here,
riu(-,x2) = u(q, x2)(q € 0RQ) is the restriction of u in the first
variable to the boundary; similarly for ry. Also, A : 92 — 09 x 092
is the diagonal embedding ¢ — (g, q) and 7, (the pushforward of
the natural projection 7 : 9Q x R — R) is the integration over the
fibers with respect to arc-length dg. Since (—A)fé U(t,x,y) is
microlocally a Fourier integral operator near the transversal
periodic reflecting rays of I, it follows from (11) that the trace is
locally a Fourier integral distribution near t = L.



