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Isospectral rigidity of the ellipse

The purpose of this lecture is to prove that ellipses are spectrally
rigid among C∞ domains with their Z2 ×Z2 symmetry, i.e. ellipses
do not admit isospectral deformations Ωt through smooth domains
with two symmetries.

Good feature: the competing domains are smooth, not just real
analytic;

Bad feature: the symmetry (is it necessary or just a technical
artifice?)

This is a step in the direction of the

Conjecture Ellipses are spectrally determined: one can hear the
shape of an ellipse .



Elliptical billiards

Elliptical billards are very special and it is conjectured (originally by
Birkhoff) that they are the unique billiard tables for which the
billards are completely integrable.

One can find movies of elliptical billiards on the website
http://cage.ugent.be/ hs/billiards/billiards.html

We start with background on billiards.



Billard flow and billiard map on domains with boundary

To define the geodesic or billiard flow G t on a domain Ω with
boundary ∂Ω, we need to specify what happens when a geodesic
intersects the boundary.

We denote by S∗Ω the unit tangent vectors to the interior of Ω
and by S∗in∂Ω the manifold with boundary of inward pointing unit
tangent vectors to Ω with footpoints in ∂Ω. The boundary consists
of unit vectors tangent to ∂Ω. The billiard flow G t is a flow on
S∗Ω ∪ S∗in∂Ω, defined as follows: When an interior geodesic of Ω
intersects the boundary ∂Ω transversally, it is reflected by the usual
Snell law of equal angles. Such trajectories are called (transveral)
reflecting rays. The complications occur when a geodesic intersects
the boundary tangentially in S∗∂Ω.



Convex versus non-convex domains, creeping rays

Convex domains are simpler than non-convex domains, since
interior rays cannot intersect the boundary tangentially. It should
be noted that geodesics of ∂Ω with the induced metric are
important billiard trajectories. They are limits of ‘creeping rays’,
i.e. rays with many small links (interior segments) which stay close
to ∂Ω. In particular, the boundary of a convex plane domain is a
closed billiard trajectory.



Billiard map or boundary map

The set S∗in∂Ω of inward pointing unit vectors behaves like a global
cross section to the billiard flow. It is then natural to reduce the
dimension by defining the billiard ball map β : B∗(∂Ω)→ B∗(∂Ω),
where B∗(∂Ω) is the ball bundle of the boundary. We first identify
S∗in∂Ω ' B∗(∂Ω) by adding to a tangent (co)vector η ∈ B∗q∂Ω of
length < 1 a multiple cνq of the inward point unit normal νq to
form a covector in S in

∂ΩΩ. The image β(q, v) is then defined to be
the tangential part of the first intersection of G t(q, η + cνq) with
∂Ω. The billiard map is symplectic with respect to the natural
symplectic form on B∗(∂Ω).



Billiard map of a plane domain

An equivalent description of the billiard map of a plane domain is
as follows. Let q ∈ ∂Ω and let ϕ ∈ (0, π). The point (q, ϕ)
corresponds to an inward pointing unit vector making an angle ϕ
with the tangent line, with ϕ = 0 corresponding to a fixed
orientation (say counter-clockwise). The billiard map is then
β(q, ϕ) = (q′, ϕ′) where (q‘, ϕ′) are the parameters of the reflected
ray at the first point of intersection with the boundary. The map β
is then area preserving with respect to sinϕds ∧ dϕ.



Billiards in a stadium, cardiod and annulus



Length spectrum of a manifold with boundary

In the case of Euclidean domains, or more generally domains where
there is a unique geodesic between each pair of boundary points,
one can specify a billiard trajectory by its successive points of
contact q0, q1, q2, . . . with the boundary. The n-link periodic
reflecting rays are the trajectories where qn = q0 for some n > 1.
The point q0, . . . , qn is then a critical point of the length functional

L(q0, . . . , qn) =
n−1∑
i=0

|qi+1 − qi |

on (∂Ω)n.



Length spectrum of a manifold with boundary

In the boundary case, the length spectrum Lsp(Ω) is the set of
lengths of closed billiard trajectories; it is not discrete, but rather
has points of accumulation at lengths of trajectories which have
intervals along the boundary. In the case of convex plane domains,
e.g., the length spectrum is the union of the lengths of periodic
reflecting rays and multiples of |∂Ω|. According to the standard
terminology, Lsp(M, g) is the set of distinct lengths, not including
multiplicities, and one refers to the the length spectrum repeated
according to multiplicity as the extended length spectrum.



Elliptical billiards are completely integrable

Let Ea,b be the ellipse x2

a2 + y2

b2 = 1. Its foci are at ±
√

a2 − b2

where a > b.

Let 0 < Z ≤ b, and define the confocal ellipse

EZ =
x2

ε+ Z
+

y 2

Z
= 1.

Proposition
Let p ∈ Ea,b and let `, `′ be two lines from p which are tangent to
EZ . The `, `′ make equal angles with νp, the normal at p.
Similarly for the confocal hyperbolae with −ε < Z < 0.



Orbits through a focus

There is a bouncing ball orbit on the major axis through the two
foci.

Now consider another billiard trajectory starting at some point
p ∈ ∂Ea,b and going through a focus, say F2.

Lemma
An orbit that goes through one focus will go infinitely often
through both foci and will asymptotically tend to the bouncing ball
orbit through the two foci.



Elliptical billiards are completely integrable

Both the billiard flow and billiard map of the ellipse are completely
integrable. I.e. there exist foliations of S∗Ω by invariant tori for Φt

and of B∗∂Ω for β.



Caustics of elliptical billiards



Phase portrait of billiard map



Invariant curves of periodic orbits

Except for certain exceptional trajectories, the periodic points of
period T form Lagrangian tori in S∗Ω, which intersect B∗∂Ω in
invariant curves for β.

The exceptions are the two bouncing ball orbits through the
major/minor axes and the trajectories which intersect the foci or
glide along the boundary.



Periodic orbits of elliptical billiards come in one-parameter
families



Spectral rigidity of an ellipse

Our main result is the infinitesimal spectral rigidity of ellipses
among C∞ plane domains with the symmetries of an ellipse. We
orient the domains so that the symmetry axes are the x-y axes.
The symmetry assumption is then that ρs is invariant under
(x , y)→ (±x ,±y).

Before stating the result, we review the definition.



Isospectral deformation

An isospectral deformation of a plane domain Ω0 is a
one-parameter family Ωs of plane domains s.th. the SpecB∆s is
constant (including multiplicities) for a fixed boundary condition
B.

We assume that Ωs = ϕs(Ω0) where ϕs is a one-parameter family
of diffeomorphisms of a ball containing Ω0. Also let X = dϕs

ds . The
normal component of X on ∂Ω0 is denoted XN .



Deformations

For expository clarity, we think of X as a normal vector field
ρ̇(q)νq on ∂Ω. We then think of ∂Ωt as the image under the map

x ∈ ∂Ω0 → x + ρs(x)νx , (1)

where ρs ∈ C 1([0, s0],C∞(∂Ω)). The first variation is defined to
be ρ̇(x) = δρ (x) := d

ds |s=0ρs(x).



Infinitesimal rigidity

An isospectral deformation is said to be trivial if Ωs = Ω0 (up to
isometry) for sufficiently small s. A domain Ω0 is said to be
spectrally rigid if all isospectral deformations are trivial.

Even if the domains Ωs or the ρs(x) are C∞ for each s, we need to
consider the dependence of ρs(x) in s.

A deformation is said to be a C 1 deformation through C∞

domains if each Ωs is a C∞ domain and the map s → Ωs is C 1.



Spectral rigidity of an ellipse

Theorem
Suppose that Ω0 is an ellipse, and that Ωs is a C 1 Dirichlet (or
Neumann) isospectral deformation of Ω0 through C∞ domains
with Z2 × Z2 symmetry. Let ρs be as in (1). Then ρ̇ = 0.

Consequently, there exist no non-trivial real analytic curves Ωt of
C∞ of domains with the spectrum of an ellipse.



Infinitesimal rigidity versus rigidity

Indeed, all isospectral deformations would have to be “flat” at
ε = 0.

Corollary
Suppose that Ω0 is an ellipse, and that s → Ωs is a C∞ Dirichlet
(or Neumann) isospectral deformation through Z2 × Z2 symmetric
C∞ domains. Then ρs must be flat at s = 0.



C∞ and not analytic

The main advance is that the domains Ωs are allowed to be C∞

rather than real analytic. Much less than C∞ could be assumed for
the domains Ωs , e.g. C 6 might be enough.

It would be desirable to remove the symmetry assumption (to the
extent possible), but symmetry seems quite necessary for the
argument.

Much of the argument is completely general– and applies to any
convex plane domain. Only the very last step involves ellipses.



Outline of proof

1. Hadamard variational formula for the Diriclet (resp. Neumann)
wave kernel cos t

√
∆B) under variation of the boundary, and in

particular for its (regularized) trace. This is completely general–any
domain, any manifold, any dimension.

2. Proof that δTr cos t
√

∆B) has co-normal singularities at lengths
of periodic transversal reflecting rays. Again, completely general.

3. Symbol at special lengths is an Abel transform.
Guillemin-Melrose: vanishing of Abel transform at special lengths
implies rigidity. Only this step uses the ellipse.



Notation

Below, we denote the perimeter of Ω by |∂Ω|. We also denote by
Lsp(Ω) the length spectrum of Ω, i.e. the set of lengths of closed
billiard trajectories.
By Lsp(Ω0) we mean the length spectrum of the ellipse, i.e. the
set of lengths of periodic billiard trajectories. They come in one
dimensional families, which intersect B∗∂Ω0 in invariant curves Γ.
There is a natural Leray measure on each invariant curve of
periodic orbits which we denote by dµΓ.



Billiards

We denote by Φt : S∗Ω→ S∗Ω the generalized geodesic flow (or
broken billiard flow) of the ellipse Ω0, and we denote by
β : B∗∂Ω0 → B∗∂Ω0 the associated billiard map. The broken
geodesic flow extends by homogneneity (degree one) to T ∗Ω− 0.
We denote the Hamiltonian vector field of the Euclidean norm
function g by Hg .



Wave trace of an ellipse

if Ω is isospectral to an ellipse Ee , then the wave trace singularities
at lengths of closed billiard trajectories must be the same as for the
ellipse. The wave trace for the ellipse has the form,

Tr cos t
√

∆g = e0(t) +
∑
T

eT (t) (2)

where e0(t) = C2 Vol(M, g) (t + i0)−2 + . . . at t = 0, where {T }
runs over the connected components of the set of periodic billiard
trajectories,where LT is the length of the periodic trajectories in
the component T , and where

eT = cT , 3
2
(t − LT + i0)−

3
2 + cT , 1

2
(t − LT + i0)−

1
2 + . . . . (3)

In the non-degenerate case, the leading exponent would be −1, not
−3/2.



Proof: Hadamard variational formula for trace of wave
group

Proposition
For each T ∈ Lsp(Ω0) for which all billiard trajectories are
transverse reflecting rays, there exist constants CΓ independent of
ρ̇ such that, near T , the leading order singularity is

δ Tr e it
√

∆

∼ it
∑

Γ:LΓ=T

CΓ

∫
Γ
ρ̇ γ dµΓ (t − T + i0)−

5
2 ,

where the sum is over the sets Γ of points on periodic trajectories
of period T ; γ is a certain function.



Level sets of action

The fixed point set of a given period T is a certain level set
{I = αT} of the Z2 × Z2-invariant Hamiltonian on B∗∂Ω0,

I := p2
ϑ + c2 cos2 ϑ.

The level sets {I = α} are β-invariant curves and up to the
Z2 ×Z2 symmetry they are irreducible invariant curves, i.e. are not
unions of invariant components.



Leray form

There is a natural invariant measure dµα on each component of
{I = α}, namely the Leray quotient measure dµα = dϑ∧dpϑ

dI of the
symplectic area form by dI . They are invariant under the Hamilton
flow of I and under the billiard map β.
In the case of an ellipse, the fixed point sets are clean fixed point
sets for Φt in T ∗Ω, resp. for β in B∗∂Ω (Guillemin-Melrose).



Ideas of proof, II: principal symbol of HD variation of wave
trce

Lemma
Let Ω0 be an ellipse, and T ∈ Lsp(Ω0) with T not a multiple of

|∂Ω|. Then the principal symbol of Tr ρ̇(∆−
1
2 U)b(t) at t = T is

given by
∫
I=α ρ̇ γ dµα, in the Dirichlet case, where dµα is the

Leray measure on {I = α}.



A kind of length spectral simplicity

Proposition
(Guillemin-Melrose): Let T0 = |∂Ω0|. Then for every interval
(mT0 − ε,mT0) for m = 1, 2, 3, . . . there exist infinitely many
periods T ∈ Lsp(Ω0) for which ΓT is the union of two invariant
curves which are mapped to each other by θ → π − θ.



Corollary for wave trace coefficients

Since we assume ρ̇ to have the same symmetry, we obtain:

Corollary
If ϕ̇ is the velocity of an isospectral deformation, then∫

ΓT

ρ̇ γ dµT = 0

for each T for which ΓT is the union of two invariant curves which
are mapped to each other by θ → π − θ.



Proof of Theorem

The remainder of the proof is the same as one of
Guillemin-Melrose.

Proposition
The only Z2 × Z2 invariant function ρ̇ satisfying the equations of
Corollary 8 is ρ̇ = 0.

First, we may assume ρ̇ = 0 at the endpoints of the major/minor
axes, since the deformation preserves the Z2 × Z2 symmetry and
we may assume that the deformed bouncing ball orbits are aligned
with the original ones. Thus ρ̇(±

√
a) = ρ̇(±

√
b) = 0.



Injectivity of an Abel transform

The Leray measure may be explicitly evaluated. By a change of
variables with Jacobian J, the integrals become

F (Z ) =

∫ b

a

ρ̇(t) γ J(t)dt√
t − (b − Z )

. (4)

for an infinite sequence of Z accumulating at b. Since 0 < a < b,
the function F (Z ) is smooth in Z for Z near b.



Injectivity of an Abel transform

It vanishes infinitely often in each interval (b − ε, b), hence is flat
at b. The kth Taylor coefficient at b is

F (k)(b) =

∫ b

a
ρ̇(t) γ J(t)t−k−

1
2 dt = 0. (5)

Since the functions t−k span a dense subset of C [a, b]), it follows
that ρ̇ ≡ 0.



Details of HD variation of wave trace

Theorem
Let Ω0 ⊂ Rn be a C∞ Euclidean domain with the property that
the fixed point sets of the billiard map are clean. Then, for any C 1

variation of Ω0 through C∞ domains Ωε, the variation of the wave
traces δTre it

√
−∆ε , with Dirichlet (or Neumann) boundary

conditions is a classical co-normal distribution for t 6= m|∂Ω0|
(m ∈ Z) with singularities contained in Lsp(Ω0). For each
T ∈ Lsp(Ω0) for which the set ΓT of periodic points of the billiard
map β of length T is a d-dimensional clean fixed point set
consisting of transverse reflecting rays, there exist non-zero
constants CΓ independent of ρ̇ such that, near T , the leading order
singularity is

δ Tr e it
√
−∆ε ∼

(
it
∑

Γ:LΓ=T

CΓ

∫
Γ
ρ̇ γ dµΓ

)
(t − T + i0)−2− d

2 ,

modulo lower order singularities.



Applications to deformations of the ellipse

For any C 1 variation of an ellipse through C∞ domains Ωε, the
leading order singularity of the wave trace variation is,

δ Tr e it
√
−∆ε ∼

(
it
∑

Γ:LΓ=T

CΓ

∫
Γ
ρ̇ γ dµΓ

)
(t − T + i0)−

5
2 ,

modulo lower order singularities, where the sum is over the
components Γ of the set ΓT of periodic points of β of length T .



Hadamard variational formula for wave traces

Consider the Dirichlet (resp. Neumann) eigenvalue problems for a
one parameter family of smooth Euclidean domains Ωε ⊂ Rn,

−∆BεΨj(ε) = λ2
j (ε)Ψj(ε) in Ωε,

BΨj(ε) = 0,

(6)

where the boundary condition B could be BΨj(ε) = Ψj(ε)|∂Ωε

(Dirichlet) or ∂νεΨj(ε)|∂Ωε (Neumann). Here, λj(ε) are the
eigenvalues of ∆ε, enumerated in order and with multiplicity, and
∂νε is the interior unit normal to Ωε. We do not assume that Ψj(ε)
are smooth in ε. We now review the Hadamard variational formula
for the variation of Green’s kernels, and adapt the formula to give
the variation of the (regularized) trace of the wave kernel.



Notation

We denote by UB(t) = e it
√
−∆Bε the wave group of Ωε with

boundary conditions B. We could as easily (or more easily) work
with

EB(t) = cos
(
t
√
−∆Bε

)
, SB(t) =

sin
(
t
√
−∆Bε

)
√
−∆Bε

. (7)

Since the boundary conditions are fixed in the deformation, we
often omit the subscript for them, and only include it when the
formulae depend on the choice. We recall that UB(t) has a
distribution trace as a tempered distribution on R. That is,
UB(ρ̂) =

∫
R ρ̂(t)UB(t)dt is of trace class for any ρ̂ ∈ C∞0 (R).



Notation

We further denote by dS the surface measure on the boundary ∂Ω
of a domain Ω, and by ru = u|∂Ω the trace operator. We further
denote by rDu = ∂νu|∂Ω the analogous Cauchy data trace for the
Dirichlet problem. We simplify the notation for the following
boundary traces Kb(q, q′) ∈ D′(∂Ω× ∂Ω) of a Schwartz kernel
K (x , y) ∈ D′(Rn × Rn) (or more precisely a distribution defined in
a neighborhood of ∂Ω× ∂Ω): Kb(q, q′) is given for D reps. N BC
by

(rDq rDq′ K )(q, q′) =
(
rqrq′NνqNνq′ K

)
(q, q′),

(rNq rNq′ K )(q, q′) = (∇T
q ∇T

q′rqrq′K )(q, q′)−
(
rqrq′∆xK

)
(q, q′),

Here, the subscripts q, q′ refer to the variable involved in the
differentiating or restricting. Also, Nν is any smooth vector field in
Ω extending ν.



Notation

We are principally interested in K (x , y) = (−∆x ,B)−
1
2 UB(t, x , y).

In the Dirichlet, resp. Neumann, case then we have,

((−∆x ,B)−
1
2 UB)b(t, q, q′)

= rDq rDq′ (−∆x ,D)−
1
2 UD(t, q, q′), resp.

∇T
q ∇T

q′rqrq′(−∆x ,N)−
1
2 UN(t, q, q′)− rqrq′((−∆x ,N)

1
2 UN)(t, q, q′).



HD variation of the wave trace

Lemma
The variation of the wave trace with boundary conditions B is
given by,

δ Tr UB(t) =
it

2

∫
∂Ω0

((−∆B)−
1
2 UB)b(t, q, q)ρ̇(q)dq.

In particular,

δ Tr EB(t) = − t

2

∫
∂Ω0

Sb
B(t, q, q)ρ̇(q)dq.

We summarize by writing,

δ Tr UB(t) =
it

2
Tr∂Ω0 ρ̇((−∆B)−

1
2 UB)b.



Classical HD variational formulae

In the Dirichlet case, the classical Hadamard variational formulae
states that, under a sufficiently smooth deformation Ωε,

δGD(λ, x , y) = −
∫
∂Ω0

∂

∂ν2
GD(λ, x , q)

∂

∂ν1
GD(λ, q, y)ρ̇(q) dq.

(8)



Proof cont.

We derive the Hadamard variational formulae for wave traces from
that of the Green’s function by using the identities,

λRB(λ) =

∫ ∞
0

e−iλtEB(t)dt,
d

dt
SB(t) = EB(t) (9)

integrating by parts and using the finite propagation speed of
SB(t) to eliminate the boundary contributions at t = 0,∞. It
follows that

RB(λ) = i

∫ ∞
0

e−iλt SB(t)dt. (10)



Singularities of Hadamard variation of trace

We now study the singularity expansion of δTre it
√
−∆ε .

In the Dirichlet case,

Tr∂Ωρ̇((−∆D)−
1
2 UD)b = π∗ ρ̇ ∆∗

(
r1r2Nν1Nν2(−∆)−

1
2 UD(t, x , y)

)
,

(11)
where Nν1 is any smooth vector field in Ω extending ν. Here,
r1u(·, x2) = u(q, x2)(q ∈ ∂Ω) is the restriction of u in the first
variable to the boundary; similarly for r2. Also, ∆ : ∂Ω→ ∂Ω× ∂Ω
is the diagonal embedding q → (q, q) and π∗ (the pushforward of
the natural projection π : ∂Ω× R→ R) is the integration over the

fibers with respect to arc-length dq. Since (−∆)−
1
2 U(t, x , y) is

microlocally a Fourier integral operator near the transversal
periodic reflecting rays of ΓT , it follows from (11) that the trace is
locally a Fourier integral distribution near t = L.


