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The inverse spectral problem
The goal of the lectures is to introduce the ISP = the inverse
spectral problem. An inverse spectral problem is to invert the map

Sp : Some operators with discrete spectrum→ their spectra.

The operators are parametrized by domains, metrics, or potentials
and the ISP is to determine the domain, metric or potential. E.g.:

1. Laplacians on bounded smooth domains Ω ⊂ Rn with
Dirichlet or Neumann boundary conditions: Determine Ω from
Sp(∆Ω);

2. Metric Laplacians ∆g on compact Riemannian manifolds
(M, g): Determine g from Sp(∆g );

3. Schrödinger operators −h2∆ + V (Laplacian plus a potential):
Determine V from Sp(−h2∆ + V );

4. Scattering matrices SV (h) : L2(Sn)→ L2(Sn).



Can you hear the shape of a drum

The most famous ISP is the Kac problem: ‘Can you hear the shape
of a drum’? I.e. can you determine a bounded plane domain
Ω ⊂ R2 from the spectrum {λj} of the boundary value problem:

∆ϕj = λ2
j ϕj in Ω,

Bϕj |∂Ω = 0,

Here, ∆ is the Euclidean Laplacian. The boundary condition is
Dirichlet Bϕ = ϕ, or Neumann Bϕ = ∂νϕ (the normal derivative).

Can one determine Ω from Sp(∆B) = {λ2
j }?



Outline of lectures on the ISP (inverse spectral problem)

1. Rapid review of current status of the ISP.

2. Define local spectral invariants: Heat and wave invariants.

3. Calculation of wave invariants and the Hadamard parametrix
for the wave group on manifolds without conjugate points.

4. Bounded Euclidean domains: wave equation, wave invariants
and Melrose-Marvizi invariants.

5. Rigidity of ellipses. Recent dynamical result of Avila-de Simoi
- Kaloshin and a new application to the ISP.



Surveys used in these lectures

I K. Datchev and H. Hezari, Inverse problems in spectral
geometry, Inside Out II, p. 455-485, Math. Sci. Res. Inst.
Publ., 60, Cambridge Univ. Press, Cambridge, 2013.

I S.Z. Survey on the inverse spectral problem, Notices of the
ICCM, Vol. 2 (2) (2014) 1-20.

I S. Z, The inverse spectral problem. With an appendix by
Johannes Sjöstrand and Maciej Zworski. Surv. Differ. Geom.,
IX, Surveys in differential geometry. Vol. IX, 401467, Int.
Press, Somerville, MA, 2004.



Some articles used in these lectures

I C. Gordon, D. Webb and S. Wolpert, Isospectral plane
domains and surfaces via Riemannian orbifolds, Invent. Math.
110 (1992) 1-22.

I (H. Hezari and S.Z.), C∞ spectral rigidity of the ellipse,
Analysis & PDE 5-5 (2012), 1105–1132 . (arXiv:1007.1741).

I A. Avila, J. de Simoi and V. Kaloshin, An integrable
deformation of an ellipse of small eccentricity is an ellipse,
arXiv 1412.2853v1.

I R. B. Melrose and S. Marvizi, Spectral invariants of convex
planar regions. J. Differential Geom. 17 (1982), no. 3,
475-502.

I G. Popov, Invariants of the length spectrum and spectral
invariants of planar convex domains. Comm. Math. Phys.
161 (1994), no. 2, 335-364.

I S. Zelditch, ”Inverse spectral problem for analytic domains, II:
Z2-symmetric domains”, Ann. of Math. (2) 170:1 (2009),
205-269.



Spectrum Map

The spectrum of a compact Riemannian manifold (possibly with
boundary) defines a map

Spec :M→ RN
+, (g ,B)→ Spec(∆g ,B) = {λ0 < λ2

1 ≤ λ2
2 ≤ · · · }

from some class of metrics M on a manifold M to the spectrum of
its Laplacian, 

∆ϕj = λ2
j ϕj , 〈ϕi , ϕj〉 = δij

Bϕj = 0 on ∂M,

with boundary conditions B : C∞(M)→ C∞(∂M) if ∂M 6= ∅.
Eigenvalues are repeated according to their multiplicities.



Laplacian

Here, ∆ denotes the positive Laplacian

∆ = − 1
√
g

n∑
i ,j=1

∂

∂xi
g ijg

∂

∂xj

of a Riemannian manifold (M, g), where gij = g( ∂
∂xi
, ∂
∂xj

), [g ij ] is

the inverse matrix to [gij ] and g = det[gij ]. We will only consider
Dirichlet Bu = u|∂M and Neumann Bu = ∂νu|∂M .



Isospectrality

Two metrics or domains are called isospectral if their Laplacians
have the same spectrum.

Isometric metrics or domains obviously have the same spectrum,
and this kind of isospectrality is ‘trivial’.

The purpose of inverse spectral theory is to determine as much as
possible of (M, g) from its spectrum.



Positive results and counterexamples

From Sp(∆g ) one can recover Vol(M, g), for instance. The volume
is called a “spectral invariant”. Showing that some geometric
invariant is a spectral invariant is called “positive result”.

A negative result is one showing that some geometric or
topological invariant is not a spectral invariant.

A dramatic kind of negative result is exhibiting non-trivial pairs (or
families) of isospectral (M, g).

The question, ‘can you hear the shape of a drum’, depends on
what we mean by ‘a drum’. I.e. what is the competing class of
domains. There exist counterexamples of Gordon-Webb-Wolpert
but they have corners and are non-convex.



Gordon-Webb-Wopert examples



Gordon-Webb-Wopert examples



Restricted isospectral problems

The spectral map

Spec :M→ RN
+, (g ,B)→ Spec(∆g ,B) = {λ0 < λ2

1 ≤ λ2
2 ≤ · · · }

is often restricted to some sub-class of metrics or domains. For
instance, one may restrict to real analytic domains, or domains
with a symmetry. The problem is to show that Spec is 1− 1 on
the sub-class.

It is known that Spec is 1-1 on real analytic plane domains with a
symmetry among other domains in this class.

It is plausible that one can hear the shape of an of a convex
analytic 2 D drum. Here, the class M is that of convex analytic
plane domains.



Positive result with one up/down symmetry

Define the class D1,L of bounded simply connected Cω plane
domains Ω satisfying:

I Ω is invariant under (x , y) 7→ (x ,−y) which reverses a
bouncing ball orbit γ of length Lγ = 2L.

I The lengths Lγ and 2Lγ are of multiplicity one in the length
spectrum Lsp(Ω).

I If {e±iα} are the eigenvalues of the linear Poincaré map Pγ ,
we also require that cos(α/2) /∈ {0, 1,±2}. This automatically
implies the non-degeneracy of the orbits γ and γ2.

Theorem
(S. Z. 2009) The map from Ω ∈ D1,L to its Dirichlet spectrum is
1-1. Same for Neumann.



Isospectral deformations and spectral rigidity
An isospectral deformation of a Riemannian manifold (possibly
with boundary) is one-parameter family of metrics satisfying
Spec(M, gt) = Spec(M, g0) for each t. Similarly, an isospectral
deformation of a domain with a fixed background metric g0 and
boundary conditions B is a family Ωt with SpecB(Ωt) = SpecB(Ω).
One could also vary boundary conditions.

A metric or domain is called “spectrally rigid” if it does not admit
a non-trivial isospectral deformation.

Theorem
(S.Z., in part with H. Hezari)

I Ellipses are spectrally rigid among C∞ domains with the same
Z2 × Z2 symmetry as the ellipse.

I Ellipses of small eccentricity are spectrally determined among
real analytic domains C 1 close to ellipses.



Terminology

The basic distinctions in inverse spectral theory are the following.
We say that

I a metric or domain is spectrally determined (within M) if it is
the unique element of M with its spectrum;

I it is locally spectrally determined if there exists a
neighborhood of the metric or domain in M on which it is
spectrally determined;

I a metric or domain is spectrally rigid in M if it does not
admit an isospectral deformation within the class;

I the inverse spectral problem is solvable in M if Spec|M is
1− 1, i.e. if any other metric or domain in M with the same
spectrum is isometric to it. If not, one has found a
counterexample.



Easy positive results

It is currently known that

I The genus of a surface is a spectral invariant.

I The round metric on S2 is spectrally determined. Same for Sn

for n ≥ 6.

I Flat 2-tori or constant curvature −1 hyperbolic surfaces of
genus g ≥ 2 are spectrally rigid. They are not always
spectrally determined.

I Discs are spectrally determined among smooth plane domains.



Open problems

It is currently not known if:

I if the standard metric g0 on Sn is determined by its spectrum
(in dimensions n ≥ 7), i.e. if (M, g) (or even (Sn, g)) is
isospectral to (Sn, g0) then it is isometric to it. This has been
proved in dimensions ≤ 6.

I if hyperbolic manifolds are determined by their spectra in
dimensions ≥ 3. I.e. if (M0, g0) is hyperbolic and (M, g) is
isospectral to it, then is (M, g) hyperbolic?

I if flat metrics are determined by their spectra in the sense
that if (M, g0) is flat and (M, g) is isospectral to it, then
(M, g) is flat (it is known that this is true in dimensions ≤ 6
or in all dimensions if additionally g is assumed to lie in a
sufficiently small neighborhood of g0.



Strategies for solving the inverse spectral problem

The strategy for obtaining positive results is to:

(A) Define a lot of spectral invariants;
(B) Calculate them in terms of geometric or dynamical invariants;
(C) Try to determine the metric or domain from the geometric
invariants.

Recall that Sp(∆) = {λ2
j }. A complete set of spectral invariants is

given by traces

The heat trace, Z (t) = Tre−t∆ =
∑∞

j=0 e
−λ2

j t (t > 0),

The zeta function ζ(s) = Tr∆−s =
∑∞

j=0 λ
−2s
j (<s > n)

The wave trace S(t) = Tre it
√

∆ =
∑∞

j=0 e
iλj t , or

Sev (t) = Tr cos t
√

∆.
(1)



Spectral invariants versus geometry

A key problem is to relate these traces to geometric invariants.
invariants.

Some important spectral invariants such as λ1 and
log det ∆ = −ζ ′(0) are hard to relate to geometry.



Local (or residual) spectral invariants

The computable spectral invariants arise from the singularities of
the traces defined above or, in another language, from
non-commutative residues of cos t

√
∆. These are always local

invariants. All local invariants known to the author are wave
invariants, i.e. arising from the singularities of the distribution

trace or residues of the wave operator U(t) = e it
√

∆ at times t in
the length spectrum of (M, g) (including t = 0).



Heat invariants

The heat trace

Tre−t∆ =
∞∑
j=0

e−λ
2
j t

on a compact Riemannian manifold without boundary has the
asymptotic expansion,

Tret∆g ∼ t−n/2
∞∑
j=0

aj t
j . (2)

The coefficients aj are the heat invariants. When n is odd, the
powers of t are singular and hence the expansion may be viewed as
a singularity expansion in which the terms become more regular.
When n is even, the terms with −n/2 + j < 0 are singular but the
rest are smooth and hence are not residual.



The first four heat invariants

The first four heat invariants in the boundaryless case are given by

a0 = Vol(M) =
∫
dVolM

a1 = 1
6

∫
SdVolM

a2 = 1
360

∫
{2|R|2 − 2|Ric |2 + 5S2]dVolM

a3 = 1
6!

∫
{−1

9 |∇R|
2 − 26

63 |∇Ric |
2 − 143

63 |∇S |
2

− 8
21R

ij
k`R

kl
rs R

rs
ijk` −

8
63R

rsR jk`
r Rsjk` + 2

3S |R|
2

−20
63R

ikRj`Rijk` − 4
7R

i
jR

j
kR

k
i −

2
3S |Ric |

2 + 5
9S

3}dVolM .

(3)

Here, S is the scalar curvature, Ric is the Ricci tensor and R is the
Riemann tensor. In general the heat invariants are integrals of
curvature polynomials of various weights in the metric.



Applications of heat invariants

I Spheres: Tanno used a0, a1, a2, a3 to prove that the round
metric g0 on Sn for n ≤ 6 is determined among all
Riemannian manifolds by its spectrum, i.e. any isospectral
metric g is necessarily isometric to g0. He also used a3 to
prove that canonical spheres are locally spectrally determined
(hence spectrally rigid) in all dimensions. Patodi proved that
round spheres are determined by the spectra Spec0(M, g) and
Spec1(M, g) on zero and 1 forms.

I Same for Complex Projective space Pn with its Fubini-Study
metric.

I Flat manifolds: Patodi and Tanno used heat invariants to
prove in dimension ≤ 5 that if (M, g) is isospectral to a flat
manifold, then it is flat: they showed that if aj = 0 for j ≥ 1,
and if n ≤ 5 then (M, g) is flat. Kuwabara used heat
invariants to prove that flat manifolds are locally spectrally
determined, hence spectrally rigid.



The boundary case
When ∂Ω 6= 0, the heat trace has the form

Tret∆g ∼ t−n/2
∞∑
j=0

aj t
j/2. (4)

For plane domains, L. Smith obtained the first five heat kernel
coefficients in the case of Dirichlet boundary conditions.

a0 = area of Ω,

a1 = −
√

π
2 |∂Ω| (the length of the boundary),

a2 = 1
3

∫
∂Ω κds,

a3 =
√
π

64

∫
∂Ω κ

2ds,

a4 = 4
315

∫
∂Ω κ

3ds,

a5 = 37
√
π

213

∫
∂Ω κ

4ds −
√
π

210

∫
∂Ω(κ′)2ds,

.

(5)



Applications

In all dimensions, one still has

a0 = Cn Voln(Ω), a1 = C ′n Voln−1(∂Ω). (6)

Hence:

I Euclidean balls in all dimensions are spectrally determined
among simply connected bounded Euclidean domains by their
Dirichlet or Neumann spectra. This follows from (6) and from
the fact that isoperimetric hypersurfaces in Rn are spheres.



Domains and metrics with the same heat invariants

Heat invariants are insufficient to determine smooth metrics or
domains. This is due to the fact that they are integrals of local
invariants of the metrics. Pairs of non-isometric metrics with the
same heat invariants can be obtained by putting two isometric
bumps. The bumped spheres will not be isometric if the distances
between the bumps are different, but the heat invariants will be
the same. There are many variations on this well-known example.
But heat invariants might be quite useful for analytic metrics and
domains, and have also been used in compactness results.



Wave invariants

These are the principal invariants we discuss from now on. The

wave group is the unitary group U(t) = e it
√

∆ of (M, g). The
wave trace is the (distribution) trace

TrU(t) =
∑

λj∈Sp(
√

∆)

e itλj . (7)

It is a tempered distribution on R. We denote its singular support
(the complement of the set where it is a smooth function) by Sing
Supp TrU(t).



Poisson relation and length spectrum

The first result on the wave trace is the Poisson relation on a
manifold without boundary,

Sing SuppTrU(t) ⊂ Lsp(M, g), (8)

where Lsp(M, g) is the length spectrum of (M, g), i.e. the set of
lengths of closed geodesics. (Colin de Verdière, Chazarain, and
Duistermaat-Guillemin, following physicists Balian-Bloch and
Gutzwiller).

We denote the length of a closed geodesic γ by Lγ . For each
L = Lγ ∈ Lsp(M, g) there are at least two closed geodesics of that
length, namely γ and γ−1 (its time reversal). The singularities due
to these lengths are identical so one often considers the even part
of TrU(t) i.e. TrE (t) where E (t) = cos(t

√
∆).



Mulitplicities in the length Spectrum

There may exist two geometrically distinct closed geodesics of the
same length. Lsp(M, g) does not include information about
multiplicities of lengths. This is the main obstacle to using the
wave trace in inverse spectral theory.



Singularity expansions

Much more is true than the Poisson relation: TrU(t) has a
singularity expansion at each L ∈ Lsp(M, g):

TrU(t) ≡ e0(t) +
∑

L∈Lsp(M,g) eL(t) mod C∞, (9)

where e0, eL are Lagrangean distributions with singularities at just
one point, i.e. singsuppe0 = {0}, singsuppeL = {L}.

At t = 0 the wave trace is essentially equivalent to the heat trace:

e0(t) = a0,−n(t + i0)−n + a0,−n+1(t + i0)−n+1 + · · · (10)

The wave coefficients a0,k at t = 0 are essentially the same as the
singular heat coefficients, hence are given by integrals over M of∫
M Pj(R,∇R, ...)dvol of homogeneous curvature polynomials.



Non-degenerate closed geodesics

In the non-degenerate case (defined below),

eL(t) = aL,−1(t − L + i0)−1 + aL,0 log(t − (L + i0))

+ aL,1(t − L + i0) log(t − (L + i0)) + · · · ,
(11)

where · · · refers to homogeneous terms of ever higher integral
degrees. The wave invariants for t 6= 0 have the form:

aL,j =
∑

γ:Lγ=L

aγ,j , (12)

where aγ,j involves on the germ of the metric along γ. Here, {γ}
runs over the set of closed geodesics of length L; Lγ , resp. L#

γ , are
the length, resp. primitive length of γ.



Principal wave invariant at γ

The principal wave invariant at t = L in the case of a
non-degenerate closed geodesic is given by

aL,−1 =
∑

γ:Lγ=L

e
iπ
4
mγL#

γ

| det(I − Pγ)|
1
2

. (13)

Here, mγ , resp. Pγ denote the Maslov index and linear Poincaré
map of γ.
The same formula for the leading singularity is valid for periodic
reflecting rays of compact smooth Riemannian domains with
boundary and with Neumann boundary conditions, while in the
Dirichlet case the numerator must be multiplied by (−1)r where r
is the number of reflection points.



Comparison of heat and wave invariants

The wave invariants for t 6= 0 are both less global and more global
than the heat invariants. First, they are more global in that they
are not integrals of local invariants, but involve the semi-global
first return map Pγ . One could imagine different local geometries
producing the same first return map. Second, they are less global
because they are determined by the germ of the metric at γ and
are unchanged if the metric is changed outside γ.



Wave invariants of iterates γr

Thus, associated to any closed geodesic γ of (M, g) is the
sequence {aγr ,j} of wave invariants of γ and of its iterates γr .
These invariants depend only on the germ of the metric at γ. The
principal question of this survey may be stated as follows:

How much of the local geometry of the metric g at γ is contained
in the wave invariants {aγr ,j}? Can the germ of the metric g at γ
be determined from the wave invariants? At least, can the
symplectic equivalence class of its germ be determined?



Wave trace and dynamics of the geodesic flow
Unlike heat invariants, the wave invariants aγ,j involve a mixture of
Riemannian and symplectic invariants of the geodesic flow.

We denote by (T ∗M,
∑

j dxj ∧ dξj) the cotangent bundle of M
equipped with its natural symplectic form. Given a metric g , we
define the metric Hamiltonian by

H(x , ξ) = |ξ| :=

√√√√n+1∑
ij=1

g ij(x)ξiξj (14)

Let
ΞH = the Hamiltonian vector field of H.

The geodesic flow is the Hamiltonian flow

G t = exp tΞH : T ∗M\ → T ∗M\0.

It is homogeneous of degree 1 with respect to the dilation
(x , ξ)→ (x , rξ), r > 0.



Restriction to S∗gM

The energy surface is the unit co-sphere bundle

S∗gM = {(x , ξ)| : H(x , ξ) = |ξ|g = 1}.

It is invariant under G t and we usually refer to the geodesic flow as

G t : S∗gM → S∗gM.

Since G t is homogeneous, nothing is lost by restricting G t to S∗gM.



Closed orbits and their Poincaré maps

Closed orbits (or periodic orbits) γ of flows are orbits of points
(x , ξ) ∈ T ∗M satisfying GT (x , ξ) = (x , ξ) for some T 6= 0 (the
period). They project to closed geodesics on the Riemannian
manifold or domain.
We recall the definition of the nonlinear Poincare map Pγ : in S∗M
one forms a symplectic transversal Sγ to γ at some point m0. One
then defines the first return map, or nonlinear Poincarë map,

Pγ(ζ) : Sγ → Sγ

by setting Pγ(ζ) = GT (ζ)(ζ), where T (ζ) is the first return time of
the trajectory to Sγ . This map is well-defined and symplectic from
a small neighborhood of γ(0) = m0 to a larger neighborhood. By
definition, the linear Poincare map is its derivative, Pγ = dPγ(m0).



Linear Poincaré map

We let J ⊥γ ⊗ C denote the space of complex normal Jacobi fields
along γ, a symplectic vector space of (complex) dimension 2n
(n = dimM − 1) with respect to the Wronskian

ω(X ,Y ) = g(X ,
D

ds
Y )− g(

D

ds
X ,Y ).

The linear Poincaré map Pγ is then the linear symplectic map on
J ⊥γ ⊗ C defined by PγY (t) = Y (t + Lγ).



Types of closed geodesics

Closed geodesics are classified by the spectral properties of the
symplectic linear map Pγ . Its eigenvalues come in 4-tuples
λ, λ̄, λ−1, λ̄−1. A closed geodesic γ is called:

I non-degenerate if det(I − Pγ) 6= 0;

I elliptic if all of its eigenvalues are of modulus one and not
equal to ±1, in which case they come in complex conjugate
pairs e i±αj .

I hyperbolic if all of its eigenvalues are real, in which case they
come in inverse pairs λjλ

−1
j

I loxodromic or complex hyperbolic in the case where the
4-tuple consists of distinct eigenvlaues as above.



Degenerate periodic orbits

In the notation for Lsp(M, g) we wrote Lγj as if the closed
geodesics of this length were isolated. But in many examples (e.g.
spheres or flat tori), the geodesics come in families, and the
associated length T is the common length of closed geodesics in
the family. In place of closed geodesics, one has components of the
fixed point sets of GT at this time. The fixed point sets could be
quite messy, so it is also common to assume that they are clean,
i.e. that the fixed point sets are manifolds, and that their tangent
spaces are fixed point sets of dGT . It is equivalent that the length
functional is Bott-Morse on the free loop space.
There are other possibilities (parabolic) in the degenerate case. For
instance, the geodesics of a flat torus of dimension n come in
n-parameter families. ♣ Integrable. ♣



The length spectrum and the marked length spectrum

The length spectrum of a boundaryless manifold (M, g) is the
discrete set

Lsp(M, g) = {Lγ1 < Lγ2 < · · · } (15)

of lengths of closed geodesics γj .


