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(M, g) Riemannian manifold with bound-

ary, g = (gij) symmetric positive definite

matrix.

Can one recover the geometry and topology from
boundary measurements?

Two types of measurements:

(1) Boundary distance function or scattering relation ,
(travel time)

(2) Dirichlet to Neumann map from Laplace-Beltrami
operator, (Calderón Problem, EIT)
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Travel Time Tomography (Transmission)

Global Seismology

Inverse Problem: Determine inner structure of Earth by measuring

travel time of seismic waves.
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Tsunami of 1960 Chilean Earthquake

Black represents the largest waves, decreasing in height through

purple, dark red, orange and on down to yellow. In 1960 a tongue

of massive waves spread across the Pacific, with big ones through-

out the region.
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Human Body Seismology

ULTRASOUND TRANSMISSION TOMOGRAPHY(UTT)

T =
∫
γ

1

c(x)
ds = Travel Time (Time of Flight).
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REFLECTION TOMOGRAPHY

Scattering

Points in medium

Obstacle
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REFLECTION TOMOGRAPHY

Oil Exploration Ultrasound
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TRAVELTIME TOMOGRAPHY (Transmission)

Motivation:Determine inner structure of Earth by mea-

suring travel times of seismic waves

Herglotz, Wiechert-Zoeppritz (1905)

Sound speed c(r), r = |x|

d
dr

(
r

c(r)

)
> 0

T =
∫
γ

1
c(r). What are the curves of propagation γ?
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Ray Theory of Light: Fermat’s principle

Fermat’s principle. Light takes the shortest optical path from A

to B (solid line) which is not a straight line (dotted line) in general.

The optical path length is measured in terms of the refractive index

n integrated along the trajectory. The greylevel of the background

indicates the refractive index; darker tones correspond to higher

refractive indices.
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The curves are geodesics of a metric.

ds2 = 1
c2(r)

dx2

More generally ds2 = 1
c2(x)

dx2

Velocity v(x, ξ) = c(x), |ξ| = 1 (isotropic)

Anisotropic case

ds2 =
n∑

i,j=1

gij(x)dxidxj
g = (gij) is a positive defi-

nite symmetric matrix

Velocity v(x, ξ) =
√∑n

i,j=1 g
ij(x)ξiξj, |ξ| = 1

gij = (gij)
−1

The information is encoded in the
boundary distance function
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More general set-up

(M, g) a Riemannian manifold with boundary
(compact) g = (gij)

x, y ∈ ∂M

dg(x, y) = inf
σ(0)=x
σ(1)=y

L(σ)

L(σ) = length of curve σ

L(σ) =
∫ 1
0

√∑n
i,j=1 gij(σ(t))dσidt

dσj
dt dt

Inverse problem

Determine g knowing dg(x, y) x, y ∈ ∂M
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dg ⇒ g ?

(Boundary rigidity problem)

Answer NO ψ : M →M diffeomorphism

ψ
∣∣∣
∂M

= Identity

dψ∗g = dg

ψ∗g =
(
Dψ ◦ g ◦ (Dψ)T

)
◦ ψ

Lg(σ) =
∫ 1
0

√∑n
i,j=1 gij(σ(t))dσidt

dσj
dt dt

σ̃ = ψ ◦ σ Lψ∗g(σ̃) = Lg(σ)
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ANOTHER MOTIVATION (STRING THEORY)

HOLOGRAPHY

Inverse problem: Can we recover (M, g) (bulk) from

boundary distance function ?

M. Parrati and R. Rabadan, Boundary rigidity and

holography, JHEP 0401 (2004) 034
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dψ∗g = dg

Only obstruction to determining g from dg ? No

dg(x0, ∂M) > supx,y∈∂M dg(x, y)

Can change metric

near SP
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Def (M, g) is boundary rigid if (M, g̃) satisfies dg̃ = dg.

Then ∃ψ : M →M diffeomorphism, ψ
∣∣∣
∂M

= Identity, so

that

g̃ = ψ∗g

Need an a-priori condition for (M, g) to be boundary

rigid.

One such condition is that (M, g) is simple
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DEF (M, g) is simple if given two points x, y ∈ ∂M , ∃!
geodesic joining x and y and ∂M is strictly convex

CONJECTURE

(M, g) is simple then (M, g) is boundary rigid ,that is

dg determines g up to the natural obstruction.

(dψ∗g = dg)

( Conjecture posed by R. Michel, 1981 )
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Metrics Satisfying the Herglotz condition

Francois Monard: SIAM J. Imaging Sciences (2014)
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Results for Isotropic Case

dβg = dg =⇒ β = 1?

Theorem (Mukhometov, Mukhometov-Romanov, Beylkin,

Gerver-Nadirashvili, ... )

YES for simple manifolds.

The sound speed case corresponds to g = 1
c2
e with e

the identity.
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Results (M, g) simple

• R. Michel (1981) Compact subdomains of R2 or H2

or the open round hemisphere

• Gromov (1983) Compact subdomains of Rn

• Besson-Courtois-Gallot (1995) Compact subdomains

of negatively curved symmetric spaces

(All examples above have constant curvature)

•


Stefanov-U (1998)
Lassas-Sharafutdinov-U
(2003)
Burago-Ivanov (2010)

 dg = dg0 , g0 close to

Euclidean
18



n = 2

• Otal and Croke (1990) Kg < 0

THEOREM(Pestov-U, 2005)

Two dimensional Riemannian manifolds with boundary

which are simple are boundary rigid (dg ⇒ g up to

natural obstruction)
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Theorem (n ≥ 3) (Stefanov-U, 2005)

There exists a generic set L̃ ⊂ Ck(M)× Ck(M) such
that

(g1, g2) ∈ L̃, gi simple, i = 1,2, dg1 = dg2

=⇒ ∃ψ : M →M diffeomorphism,

ψ
∣∣∣
∂M

= Identity, so that g1 = ψ∗g2 .

Remark

If M is an open set of Rn, L̃ contains all pairs of
simple and real-analytic metrics in Ck(M).
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Theorem (n ≥ 3) (Stefanov-U, 2005)

(M, gi) simple i = 1,2, gi close to g0 ∈ L where L is a

generic set of simple metrics in Ck(M). Then

dg1 = dg2 ⇒ ∃ψ : M →M diffeomorphism,

ψ
∣∣∣
∂M

= Identity, so that g1 = ψ∗g2

Remark

If M is an open set of Rn, L contains all simple and

real-analytic metrics in Ck(M).
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Geodesics in Phase Space

g =
(
gij(x)

)
symmetric, positive definite

Hamiltonian is given by

Hg(x, ξ) =
1

2

( n∑
i,j=1

gij(x)ξiξj − 1
)

g−1 =
(
gij(x)

)

Xg(s,X0) =
(
xg(s,X0), ξg(s,X0)

)
be bicharacteristics ,

sol. of
dx

ds
=
∂Hg

∂ξ
,

dξ

ds
= −

∂Hg

∂x

x(0) = x0, ξ(0) = ξ0, X0 = (x0, ξ0), where ξ0 ∈ Sn−1
g (x0)

Sn−1
g (x) =

{
ξ ∈ Rn; Hg(x, ξ) = 0

}
.

Geodesics Projections in x: x(s) .
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Scattering Relation

dg only measures first arrival times of waves.

We need to look at behavior of all geodesics

‖ξ‖g = ‖η‖g = 1

αg(x, ξ) = (y, η), αg is SCATTERING RELATION

If we know direction and point of entrance of geodesic

then we know its direction and point of exit.
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Scattering relation follows all geodesics.

Conjecture Assume (M,g) non-trapping. Then αg de-

termines g up to natural obstruction.

(Pestov-U, 2005) n = 2 Connection between αg and

Λg (Dirichlet-to-Neumann map)

(M, g) simple then dg ⇔ αg
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Dirichlet-to-Neumann Map (Lee–U, 1989)
(M, g) compact Riemannian manifold with boundary.
∆g Laplace-Beltrami operator g = (gij) pos. def. sym-
metric matrix

∆gu =
1

√
det g

n∑
i,j=1

∂

∂xi

√det g gij
∂u

∂xj

 (gij) = (gij)
−1

∆gu = 0 on M

u
∣∣∣
∂M

= f

Conductivity:

γij =
√

det g gij

Λg(f) =
n∑

i,j=1

νjgij
∂u

∂xi

√
det g

∣∣∣∣∣
∂M

ν = (ν1, · · · , νn) unit-outer normal
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∆gu = 0

u
∣∣∣
∂M

= f

Λg(f) =
∂u

∂νg
=

n∑
i,j=1

νjgij
∂u

∂xi

√
det g

∣∣∣∣∣
∂M

current flux at ∂M

Inverse-problem (EIT)

Can we recover g from Λg ?

Λg = Dirichlet-to-Neumann map or voltage to current
map
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∆gu = 0

u
∣∣∣
∂M

= f
Λg(f) =

∂u

∂νg

∣∣∣∣∣
∂M

Λg ⇒ g ?

Answer: No Λψ∗g = Λg

Qg(f) =
∑
i,j

∫
M
gij

∂u

∂xi

∂u

∂xj

√
det gdx

Qg(f) =
∫
∂M

Λg(f)fdS

Qg ⇔ Λg

ψ : M →M diffeomorphism, ψ
∣∣∣
∂M

= Identity

v = u ◦ ψ, ∆ψ∗gv = 0

Qψ∗g = Qg ⇒ Λψ∗g = Λg
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Qg(f) =
∑
i,j
∫
M gij ∂u∂xi

∂u
∂xj

√
det gdx

Qψ∗g(f) = Qg(f)
ψ : M →M diffeomorphism,

ψ
∣∣∣
∂M

= Identity

ψ∗g =
(
Dψ ◦ g ◦ (Dψ)T

)
◦ ψ

Λψ∗g = Λg

Problem: Only obstruction?

n = 2, Additional obstruction

∆β(x)gu = 1
β(x)∆gu, β > 0.

Λβ(x)gf = Λgf if β
∣∣∣
∂M

= 1

In n = 2 these are the only obstructions
28



Theorem (n = 2)(Lassas-U, 2001)

(M, gi), i = 1,2, connected Riemannian manifold with

boundary. Assume

Λg1 = Λg2

Then ∃ψ : M →M diffeomorphism, ψ
∣∣∣
∂M

= Identity,

and β > 0, β
∣∣∣
∂M

= 1 so that

g1 = βψ∗g2

In fact, one can determine topology of M as well.
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Theorem (n ≥ 3) (Lassas-U 2001, Lassas-Taylor-U 2003)

(M, gi), i = 1,2, real-analytic, connected, compact, Rie-

mannian manifolds with boundary. Assume

Λg1 = Λg2

Then ∃ψ : M →M diffeomorphism, ψ
∣∣∣
∂M

= Identity, so

that

g1 = ψ∗g2

One can also determine topology of M, as well (only

need to know Λg, ∂M).
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Theorem (Guillarmou-Sa Barreto, 2009) (M, gi), i =

1,2, are compact Riemannian manifolds with boundary

that are Einstein. Assume

Λg1 = Λg2

Then ∃ψ : M → M diffeomorphism, ψ|∂M = Identity

such that

g1 = ψ∗g2

Note: Einstein manifolds with boundary are real analytic

in the interior.
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n = 2

THEOREM(Pestov-U, 2005)

Two dimensional Riemannian manifolds with boundary

which are simple are boundary rigid (dg ⇒ g up to

natural obstruction)
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CONNECTION BETWEEN BOUNDARY RIGIDITY AND

DIRICHLET-TO-NEUMANN MAP

THEOREM (n = 2) (Pestov-U, 2005)

If we know dg then we can determine Λg if (M, g)

simple.

IN FACT (M, g) simple n = 2

dg ⇒ αg ⇒ Λg

αg(x, ξ) = (y, η)
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CONNECTION BETWEEN SCATTERING RELATION
AND DIRICHLET-TO-NEUMANN MAP(n = 2)

αg(x, ξ) = (y, η)

αg determines Λg if I∗ is onto.

If(x, ξ) =
∫
γ
f

I∗ is onto if I is injective for

simple manifolds

Now Λg
L−U
=⇒ βψ∗g, β > 0

If I is injective, we can also recover β for simple mani-
folds.
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Dirichlet-to-Neumann map Boundary distance function

Λg(f)(x) =
∫
∂M λg(x, y)f(y)dSy dg(x, y), x, y ∈ ∂M

λg depends on 2n-2 variables dg(x, y) dep. on 2n-2 variables

∆gu = 0, u
∣∣∣
∂M

= f dg(x, y) = infσ(0)=x
σ(1)=y

Lg(σ)

Λg ⇐⇒ Qg
Qg(f) =

∑∫
M gij ∂u∂xi

∂u
∂xj

dx
Lg(σ) =

∫ 1
0

√
gij(σ(t))∂σi∂t

∂σj
∂t dt= inf

v
∣∣∣
∂M

=f

∫
M gij ∂v∂xi

∂v
∂xj

dx
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Dirichlet-to-Neumann map (Scattering relation)

∆gu = 0

u
∣∣∣
∂M

= f Hg(x, ξ) = 1
2

(∑
gijξiξj − 1

)
Λg(f) = ∂u

∂νg
dxg
ds = +

∂Hg
∂ξ

dξg
ds = −∂Hg∂x

xg(0) = x, ξg(0) = ξ, ‖ξ‖g = 1
we know (xg(T ), ξg(T )){

(f,Λg(f))
}
⊆ L2(∂M)× L2(∂M) αg(x, ξ) = (y, η)

is Lagrangian manifold
{

(x, ξ), αg(x, ξ)
}

projected

g=e=Euclidean to T ∗(∂M)× T ∗(∂M) is〈
(f1, g1), (f2, g2)

〉
Lagrangian manifold

=
∫
∂M(g1f2 − f1g2)dS
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Theorem (n=2). (M, gi) simple, i = 1,2.

dg1 = dg2 ⇒ g1 = ψ∗g2,

ψ : M →M diffeomorphism, ψ
∣∣∣
∂M

= Identity.

Proof:

dg1 = dg2 ⇒ Λg1 = Λg2.

Λg1 = Λg2.
Lassas−U

=⇒ ∃ψ : M → M diffeomorphism,
ψ
∣∣∣
∂M

= Identity, and β > 0, β
∣∣∣
∂M=1

such that

g1 = βψ∗g2

dg1 = dg2 = dψ∗g2
= d1

βg1
.

Mukhometov ⇒ β = 1. �
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Lens Rigidity

Define the scattering relation αg and the length (travel
time) function `:

αg : (x, ξ)→ (y, η), `(x, ξ)→ [0,∞].

Diffeomorphisms preserving ∂M pointwise do not change
L, `!

Lens rigidity: Do αg, ` determine g uniquely, up to isometry?
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Lens rigidity: Do αg, ` determine g uniquely, up to isometry?

No, There are counterexamples for trapping manifolds
(Croke-Kleiner).

The lens rigidity problem and the boundary rigidity one
are equivalent for simple metrics! This is also true lo-
cally, near a point p where ∂M is strictly convex.

For non-simple metrics (caustics and/or non-convex
boundary), the Lens Rigidity is the right problem to
study.

There are fewer results: local generic rigidity near a
class of non-simple metrics (Stefanov-U, 2009), for
real-analytic metrics satisfying a mild condition (Vargo,
2010), the torus is lens rigid (Croke 2014), stability es-
timates for a class of non-simple metrics (Bao-Zhang
2014; Stefanov-U-Vasy, 2014; Guillarmou, 2015).
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Theorem (C. Guillarmou 2015). Let (M, g) be a surface

with strictly convex boundary hyperbolic trapping and

no conjugate points. Then lens data determines the

metric up to a conformal factor.
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Theorem (Vargo, 2009)

(Mi, gi), i = 1,2, compact Riemannian real-analytic

manifolds with boundary satisfying a mild condition.

Assume

αg1 = αg2 , `g1 = `g2

Then ∃ψ : M →M diffeomorphism, such that

ψ∗g1 = g2
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Theorem (n ≥ 3) (Stefanov-U, 2009)

The lens relation determines the metric near a generic

set of metrics under some assumptions on geodesics.

Main one: Given any (x0, ξ0) ∈
T ∗M , ∃ a geodesic γ going

through x0 with normal ξ0 such

that there are no conjugate points

on γ.
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Examples:

A cylinder around an arbitrary geodesic

γ0 : a finite length geodesic segment on a Riemannian

manifold, conjugate points are allowed.

M : a “cylinder” around γ0, close enough to it.

One can study the scattering relation only for geodesics

almost perpendicular to γ0, there are no conjugate points

on them.
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The interior of a perturbed torus

M = S1 × {x2
1 + x2

2 ≤ 1} , g close to the flat one:

We need only geodesics almost perpendicular to the
boundary. Note that M is trapping!

More generally, one can consider a tubular neighbor-
hood of any periodic geodesics on any Riemannian man-
ifold.
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Partial Data: General Case

Boundary Rigidity with partial data: Does dg, known

on ∂M × ∂M near some p, determine g near p up to

isometry?
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Partial Data: Isotropic Case

Assume that g is isotropic, i.e., gij(x) = c−2(x)δij. Phys-

ically, this corresponds to a variable wave speed that

does not depend on the direction of propagation. In

the class of the isotropic metrics, we do not have the

freedom to apply isometries and we would expect g to

be uniquely determined.

This is known to be true for simple metrics (Mukhometov,

Romanov, et al.) More generally, we can fix g0 and we

have uniqueness of the recovery of the conformal factor

c(x) in c−2g0.
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Partial Data: Isotropic Case

Boundary Rigidity with partial data: Does dc−2g0
,

known on ∂M × ∂M near some p, determine c(x) near

p uniquely?
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Theorem (Stefanov-U-Vasy, 2013). Let dimM ≥ 3. If

∂M is strictly convex near p for c and c̃, and dc−2g0
= dc̃−2g0

near (p, p), then c = c̃ near p.

Also stability and reconstruction.

The only results so far of similar nature is for real ana-

lytic metrics (Lassas-Sharafutdinov-U, 2003). We can

recover the whole jet of the metric at ∂M and then use

analytic continuation.
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Example: Herglotz and Wiechert & Zoeppritz showed
that one can determine a radial speed c(r) in the ball
B(0,1) satisfying

d

dr

r

c(r)
> 0.

The uniqueness is in the class of radial speeds.

One can check directly that their condition is equivalent
to the following one: the Euclidean spheres {|x| = t},
t ≤ 1 are strictly convex for c−2dx2 as well. Then
B(0,1) satisfies the foliation condition. Therefore, if
c̃(x) is another speed, not necessarily radial, with the
same lens relation, equal to c on the boundary, then
c = c̃. There could be conjugate points.

Therefore, speeds satisfying the Herglotz and Wiechert
& Zoeppritz condition are conformally lens rigid.
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Metrics Satisfying the Herglotz condition

Francois Monard: SIAM J. Imaging Sciences (2014)

50



Idea of the proof in isotropic case

The proof is based on two main ideas.

First, we use the approach in a recent paper by U-Vasy

(2012) on the linear integral geometry problem.

Second, we convert the non-linear boundary rigidity

problem to a “pseudo-linear” one. Straightforward lin-

earization, which works for the problem with full data,

fails here.
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First Idea: The Linear Problem

Let (M, g) be compact with smooth boundary. Lin-

earizing g 7→ dg in a fixed conformal class leads to the

ray transform

If(x, ξ) =
∫ τ(x,ξ)

0
f(γ(t, x, ξ)) dt

where x ∈ ∂M and ξ ∈ SxM = {ξ ∈ TxM ; |ξ| = 1}.

Here γ(t, x, ξ) is the geodesic starting from point x in

direction ξ, and τ(x, ξ) is the time when γ exits M . We

assume that (M, g) is nontrapping, i.e. τ is always finite.
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First Idea: The Linear Problem

U-Vasy result: Consider the inversion of the geodesic

ray transform

If(γ) =
∫
f(γ(s)) ds

known for geodesics intersecting some neighborhood

of p ∈ ∂M (where ∂M is strictly convex) “almost tan-

gentially”. It is proven that those integrals determine

f near p uniquely. It is a Helgason support type of

theorem for non-analytic curves! This was extended

recently by H. Zhou for arbitrary curves (∂M must be

strictly convex w.r.t. them) and non-vanishing weights.
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The main idea in U-Vasy is the following:

Introduce an artificial, still strictly convex boundary

near p which cuts a small subdomain near p. Then

use Melrose’s scattering calculus to show that the I,

composed with a suitable ‘‘back-projection” is elliptic

in that calculus. Since the subdomain is small, it would

be invertible as well.
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Consider

Pf(z) := I∗χIf(z) =
∫
SM

x−2χIf(γz,v)dv,

where χ is a smooth cutoff sketched below (angle ∼ x),
and x is the distance to the artificial boundary.
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Inversion of local geodesic transform

Pf(z) := I∗χIf(z) =
∫
SM

x−2χIf(γz,v)dv,

Main result: P is an elliptic pseudodifferential operator

in Melrose’s scattering calculus.

There exists A such that AP = Identity +R

This is Fredholm and R has a small norm in a neigh-

borhood of p. Therefore invertible near p.
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Second Step: Reduction to Pseudolinear Problem

Identity (Stefanov-U, 1998)

X 0

Xg1
(t)

Xg2
(t)

Xg1
(s)

Vg1 V g2
g

T = dg1,

F (s) = Xg2

(
T − s,Xg1(s,X0)

)
,

F (0) = Xg2(T,X0), F (T ) = Xg1(T,X0),∫ T
0
F ′(s)ds = Xg1(T,X0)−Xg2(T,X0)

∫ T
0

∂Xg2

∂X0

(
T − s,Xg1(s,X0)

)
(Vg1 − Vg2)

∣∣∣
Xg1(s,X0)

dS

= Xg1(T,X0)−Xg2(T,X0)
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Identity (Stefanov-U, 1998)

∫ T
0

∂Xg2

∂X0

(
T − s,Xg1(s,X0)

)
(Vg1 − Vg2)

∣∣∣
Xg1(s,X0)

dS

= Xg1(T,X0)−Xg2(T,X0)

Vgj :=

(
∂Hgj

∂ξ
,−
∂Hgj

∂x

)
the Hamiltonian vector field.

Particular case:

(gk) =
1

c2k

(
δij
)
, k = 1,2

Vgk =
(
c2kξ, −

1

2
∇(c2k)|ξ|2

)
Linear in c2k!
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Reconstruction

∫ T
0

∂Xg1

∂X0

(
T − s,Xg2(s,X0)

)
×(

(c21 − c
2
2)ξ, −

1

2
∇(c21 − c

2
2)|ξ|2

)∣∣∣
Xg2(s,X0)

dS

= Xg1(T,X0)︸ ︷︷ ︸
data

−Xg2(T,X0)

Inversion of weighted geodesic ray transform and use sim-

ilar methods to U-Vasy.
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The Linear Problem: General Case

The linearization of the map g → dg leads to the ques-
tion of invertability of the integration of two tensors
along geodesics.

Let f = fij dx
i ⊗ dxj be a symmetric 2-tensor in M .

Define f(x, ξ) = fij(x)ξiξj. The ray transform of f is

I2f(x, ξ) =
∫ τ(x,ξ)

0
f(ϕt(x, ξ)) dt, x ∈ ∂M, ξ ∈ SxM,

where ϕt is the geodesic flow,

ϕt(x, ξ) = (γ(t, x, ξ), γ̇(t, x, ξ)).

In coordinates

I2f(x, ξ) =
∫ τ(x,ξ)

0
fij(γ(t))γ̇i(t)γ̇j(t) dt.
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The Linear Problem: General Case

Recall the Helmholtz decomposition of F : Rn → Rn,

F = F s +∇h, ∇ · F s = 0.

Any symmetric 2-tensor f admits a solenoidal decom-
position

f = fs + dh, δfs = 0, h|∂M = 0

where h is a symmetric 1-tensor, d = σ∇ is the inner
derivative (σ is symmetrization), and δ = d∗ is diver-
gence.

By the fundamental theorem of calculus, I2(dh) = 0 if
h|∂M = 0. I2 is said to be s-injective if it is injective on
solenoidal tensors.
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Local Result for Linearized Problem

Theorem (Stefanov-U-Vasy, 2014). Let f be a sym-
metric tensor field of order 2. let p ∈ ∂M be a strictly
convex point. Assume that I2(f)(γ) = 0 for all geodesics
γ joining points near p. Then f is s-injective near p.

This is a Helgason type support theorem for tensor
fields of order 2. The only previous result was for real-
analytic metrics (Krishnan).

After this one uses pseudolinearization again to obtain
the local boundary rigidity result.

A global boundary rigidity result is expected to be ob-
tained in the same way as the isotropic case assuming
the foliation condition.
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REFLECTION TRAVELTIME TOMOGRAPHY
Broken Scattering Relation

(M, g): manifold with boundary with Riemannian metric
g

((x0, ξ0), (x1, ξ1), t) ∈ B
t = s1 + s2

Theorem (Kurylev-Lassas-U)

n ≥ 3. Then ∂M and the broken scattering relation B
determines (M, g) uniquely.
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Numerical Method
(Chung-Qian-Zhao-U, IP 2011)

∫ T
0

∂Xg1

∂X0

(
T − s,Xg2(s,X0)

)
×(

(c21 − c
2
2)ξ, −

1

2
∇(c21 − c

2
2)|ξ|2

)∣∣∣
Xg2(s,X0)

dS

= Xg1(T,X0)−Xg2(T,X0)

Adaptive method

Start near ∂Ω with

c2 = 1 and iterate.
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Numerical examples

Example 1: An example with no broken geodesics,

c(x, y) = 1 + 0.3 sin(2πx) sin(2πy), c0 = 0.8.

Left: Numerical solution (using adaptive) at the 55-th iteration.

Middle: Exact solution. Right: Numerical solution (without

adaptive) at the 67-th iteration.

65



Example 2: A known circular obstacle enclosed by a

square domain. Geodesic either does not hit the

inclusion or hits the inclusion (broken) once.

c(x, y) = 1 + 0.2 sin(2πx) sin(πy), c0 = 0.8.

Left: Numerical solution at the 20-th iteration. The relative error

is 0.094%. Right: Exact solution.
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Example 3: A concave obstacle (known).

c(x, y) = 1 + 0.1 sin(0.5πx) sin(0.5πy), c0 = 0.8.

Left: Numerical solution at the 117-th iteration. The relative

error is 2.8%. Middle: Exact solution. Right: Absolute error.
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Example 4: Unknown obstacles and medium.

Left: The two unknown obstacles. Middle: Ray coverage of the

unknown obstacle. Right: Absolute error.
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Example 4: Unknown obstacles and medium (contin-

ues).

r = 1 + 0.6 cos(3θ) with r =
√

(x− 2)2 + (y − 2)2.

c(r) = 1 + 0.2 sin r

Left: The two unknown obstacles. Middle: Ray coverage of the

unknown obstacle. Right: Absolute error.
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Example 5: The Marmousi model.

Left: The exact solution on fine grid. Middle: The exact solution

projected on a coarse grid. Right: The numerical solution at the

16-th iteration. The relative error is 2.24%.
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