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Direct problem: given object, determine data
Inverse problem: given noisy data, recover object

Object Data

Direct problem

Inverse problem



Direct problem: given object, determine data
Inverse problem: given noisy data, recover object

Object (positive photograph) Data (negative photograph)

Forward map: subtraction from a constant



Direct problem: given object, determine data
Inverse problem: given noisy data, recover object

Object (sharp photograph) Data (blurred photograph)

Forward map: convolution operator with smooth kernel



Direct problem: given object, determine data
Inverse problem: given noisy data, recover object

Object (X-ray attenuation) Data (sinogram)

Forward map: discrete Radon transform



Direct problem: given object, determine data
Inverse problem: given noisy data, recover object

Object (conductivity) Data (voltage-to-current map)

Forward map: electrical boundary measurements



Direct problem: given object, determine data
Inverse problem: given noisy data, recover object

Object (sound-hard obstacles) Data (far-field pattern)

Forward map: far-away values of the scattered acoustic wave



Inverse problem = interpretation of an indirect
measurement modelled by a forward map F

Model space X Data space Y

D(F ) F (D(F ))

x

F (x)

m
F

Consider the measurement model m = F (x) + ε. We want to know x , but
all we can do is measure m that depends indirectly on x . Moreover, the
measurement is corrupted with noise ε.



Ill-posed inverse problems are defined
as opposites of well-posed direct problems

Hadamard (1903): a problem is well-posed
if the following conditions hold.

1. A solution exists,
2. The solution is unique,
3. The solution depends
continuously on the input.

Well-posed direct problem:
Input x , find infinite-precision data F (x).

Ill-posed inverse problem:
Input noisy data m = F (x) + ε, recover x .



The solution of an inverse problem is a
set of instructions for recovering x stably from m

Those instructions need to be

(i) backed up by rigorous mathematical theory, and

(ii) implementable as an effective computational algorithm.

The solution of an ill-posed inverse problems requires
complementing insufficient measurement data by a priori
information. This is done by designing and implementing a
regularization strategy Γα.



Regularization means constructing a continuous
map Γα : Y → X that inverts F approximately

Model space X Data space Y

D(F ) F (D(F ))

x

F (x)

m δ

F

ΓαΓα(m)

The reconstruction error ‖Γα(δ)(m) − x‖X needs to vanish asymptotically
as the zero-noise level δ → 0.
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Wilhelm Conrad Röntgen invented X-rays and was
awarded the first Nobel Prize in Physics in 1901



Godfrey Hounsfield and Allan McLeod Cormack
were the first to develop X-ray tomography

Hounsfield (top) and Cormack
received Nobel prizes in 1979.



Reconstruction of a function from its line integrals
was first invented by Johann Radon in 1917

Johann Radon (1887-1956)

f (P) = −1
π

∫ ∞
0

dFp(q)

q



Traditional X-ray tomography requires many
projection images using small angular steps

1
4π2

∫
S1

∫
R

d
ds (Rf )(θ, s)

x · θ − s
ds dθ



Contrast-enhanced CT of abdomen,
showing liver metastases



Head CT can be used for detecting and
monitoring brain hemorrhage

Source: LearningRadiology.com



Unusual variant of the Nutcracker Fracture
of the calcaneus and tarsal navicular

[Gajendran, Yoo & Hunter, Radiology Case Reports 3 (2008)]

Axial slice of
the right foot

Sagittal slice

Another
axial slice

3D render
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X-ray intensity attenuates inside matter,
here shown with the Shepp-Logan phantom

(Loading video)


Xray_attn_SL3.mov
Media File (video/quicktime)



X-ray intensity attenuates inside matter,
here shown with a homogeneous block

(Loading video)


Xray_attn_block1.mov
Media File (video/quicktime)



X-ray intensity attenuates inside matter,
here shown with two homogeneous blocks

(Loading video)


Xray_attn_block2.mov
Media File (video/quicktime)



A digital X-ray detector counts how many
photons arrive at each pixel

X-ray source

1000

photon
count

1000• -

Detector



Adding material between the source and detector
reveals the exponential X-ray attenuation law

1000

1000

1000

photon
count

1000

500

250

• -

• -

• -



We take logarithm of the photon counts to
compensate for the exponential attenuation law

log

6.9

6.2

5.5

1000

1000

1000

photon
count

1000

500

250

• -

• -

• -



Final calibration step is to subtract the logarithms
from the empty space value (here 6.9)

log

6.9

6.2

5.5

1000

1000

1000

photon
count

1000

500

250

• -

• -

• -

line
integral

0.0

0.7

1.4



After calibration we are observing how much
attenuating matter the X-ray encounters

(Loading video)


Xray_int_block2.mov
Media File (video/quicktime)



After calibration we are observing how much
attenuating matter the X-ray encounters

(Loading video)


Xray_int_SL3.mov
Media File (video/quicktime)



This sweeping movement is the data collection
mode of first-generation CT scanners

(Loading video)


SL_sweep1.mov
Media File (video/quicktime)



Rotating around the object allows us to form
the so-called sinogram

(Loading video)


SL_sinogram.mov
Media File (video/quicktime)



This is an illustration of the standard
reconstruction by filtered back-projection

(Loading video)


SL_FBPrecon.mov
Media File (video/quicktime)



This is my new X-ray laboratory
at University of Helsinki
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Let us study a simple two-dimensional example of
tomographic imaging

4 4 5

1 3 4

1 0 2



Tomography is based on measuring densities of
matter using X-ray attenuation data

13 (=4+4+5)
4 4 5

1 3 4

1 0 2

X-ray source
• -

Detector



A projection image is produced by parallel X-rays
and several detector pixels (here three pixels)

13 (=4+4+5)

8 (=1+3+4)

3 (=1+0+2)

4 4 5

1 3 4

1 0 2

• -

• -

• -

Detector



For tomographic imaging it is essential to record
projection images from different directions

4 4 5

1 3 4

1 0 2

6 7 11

•

?

•

?

•

?



The length of X-rays traveling inside each pixel is
important, thus here the square roots
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The direct problem of tomography is to find the
projection images from known tissue

4 4 5

1 3 4

1 0 2
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The inverse problem of tomography is to
reconstruct the interior from X-ray data

? ? ?

? ? ?

? ? ?
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The limited-angle problem is harder than
the full-angle problem
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In limited-angle imaging, different objects may
produce the same data
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Reconstruction requires additional
a priori information
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We write the reconstruction problem
in matrix form

f1 f4 f7

f2 f5 f8

f3 f6 f9
@
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Measurement model: m = Af + ε

f =



f1
f2
f3
f4
f5
f6
f7
f8
f9


, m =



m1
m2
m3
m4
m5
m6

 ,

m
1

m
2

m
3

m4

m5

m6



This is the matrix equation related to
the above measurement

m1
m2
m3
m4
m5
m6

 =



0
√
2 0 0 0

√
2 0 0 0√

2 0 0 0
√
2 0 0 0

√
2

0 0 0
√
2 0 0 0

√
2 0

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1


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+
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ε1
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ε4
ε5
ε6
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This is the matrix equation related to
the above measurement

m1
m2
m3
m4
m5
m6

 =



0
√
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√
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√
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Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram



Construction of the sinogram

Unknown: f ∈ R32×32 Data: Af ∈ R49×32



The Singular Value Decomposition A = UDV T

allows analysis of any linear inverse problem

Nonzero elements of matrix A Singular values of matrix A:
diagonal of D in A = UDV T



Nonuniqueness in X-ray tomography

It was noted already in [Cormack 1963], and later analyzed in
[Smith, Solmon & Wagner 1977, Theorem 4.2], that a finite
number of line integrals does not determine the target uniquely
since the measurement operator has a nontrivial nullspace.



These phantoms have almost the same sinogram
Original phantom Data error 1% Data error 0.2%

Data error 0.05% Data error 0.02% Data error 0.002%



Ill-posed inverse problems are defined
as opposites of well-posed direct problems

Hadamard (1903): a problem is well-posed
if the following conditions hold.

1. A solution exists,
2. The solution is unique,
3. The solution depends
continuously on the input.

Well-posed direct problem:
Input f , find infinite-precision data Af .

Ill-posed inverse problem:
Input noisy data m = Af + ε, recover f .



Hadamard’s conditions in a linear inverse problem
with forward map given by a matrix A

Rn RkA -

Ker(A)

(Ker(A))⊥

Coker(A)

Range(A)

• f0

• f

•m

The matrix A maps bijectively between (Ker(A))⊥ and Range(A).
However, decreasing singular values may make this bijection unstable,
leading to trouble with Hadamard’s condition 3.



Recall the singular value decomposition (SVD)
of the matrix A

A = UDV T = U



d1 0 · · · 0 · · · 0

0 d2
...

...
. . .

dr
0

...
. . .

...
0 · · · · · · 0


V T

Here the singular values dj satisfy d1 ≥ d2 ≥ · · · ≥ dr > 0
and dr+1 = dr+2 = · · · = dmin{k,n} = 0.

Note that in the case r = min{k , n} all singular values are positive.
If additionally n = k then A is invertible. But the condition number
cond(A) := d1/dmin{k,n} is large, and A−1 is numerically unstable.



The Moore-Penrose pseudoinverse takes care of
Hadamard’s conditions 1 and 2

A† = VD†UT = V



1/d1 0 · · · 0 · · · 0

0 1/d2
...

...
. . .

1/dr
0

...
. . .

...
0 · · · · · · 0


UT

We can compute naive reconstruction as the uniquely defined minimum
norm solution A†m. However, this only works for rank-deficient problems
where Hadamard’s condition 3 is not active.



Naive reconstruction using the Moore-Penrose
pseudoinverse; data has 0.1% relative noise

Original phantom, values between
zero (black) and one (white)

Naive reconstruction with minimum
−14.9 and maximum 18.5
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Inverse problem of X-ray tomography: given
noisy sinogram, find a stable approximation to f

Model space X = R32×32 Data space Y = R32×49

D(A) A(D(A))

f=

Af =

m
A



Tikhonov regularization is the classical option for
noise-robust tomographic reconstruction

Model space X = R32×32 Data space Y = R32×49

D(A) A(D(A))

f

Af

m
A

δ

ΓαΓα(m)

Write a penalty functional Φ(f ) = ‖Af −m‖22 +α‖f ‖22, where 0 < α <∞
is a regularization parameter. Define Γα(m) by Φ(Γα(m)) = min

f ∈X
{Φ(f )}.



Tikhonov regularization can be expressed as
filtering the singular values of the matrix A

V



d1

d2
1 + α

0 · · · 0

0 . . . ...
... . . . 0

0 · · · 0
dmin{k,n}

d2
min{k,n} + α


UTm



Constrained Tikhonov regularization
argmin

f ∈Rn
+

{
‖Af −m‖22 + α‖f ‖22

}

Original phantom Reconstruction
Relative square norm error 35%



Rudin, Osher and Fatemi (1992): total variation
regularization argmin

f ∈Rn
+

{
‖Af −m‖22 + α‖∇f ‖1

}

Original phantom TV regularized reconstruction
Relative square norm error 32%



Naive reconstruction using the Moore-Penrose
pseudoinverse

Original phantom Naive reconstruction
Relative square norm error 1246%



We collected X-ray projection data of a walnut
from 1200 directions

Laboratory and data collection by
Keijo Hämäläinen and Aki Kallonen,
University of Helsinki.

The data is openly available at
http://fips.fi/dataset.php, thanks to
Esa Niemi and Antti Kujanpää



Reconstructions of a 2D slice through the walnut
using filtered back-projection (FBP)

FBP with comprehensive data
(1200 projections)

FBP with sparse data
(20 projections)



Sparse-data reconstruction of the walnut using
non-negative Tikhonov regularization

Filtered back-projection Constrained Tikhonov regularization
argmin

f ∈Rn
+

{
‖Af −m‖22 + α‖f ‖22

}



Sparse-data reconstruction of the walnut using
non-negative total variation regularization

Filtered back-projection Constrained TV regularization
argmin

f ∈Rn
+

{
‖Af −m‖22 + α‖∇f ‖1

}



Take-home messages from our overview of
X-ray tomography

Object Data

Direct problem

Inverse problem

Uniqueness does not save us.
Even with an injective forward map,
failure of Hadamard’s condition 3
means that we need regularization
for solving the inverse problem.

Non-uniqueness can be handled.
Our stable regularization strategy
just needs enough a priori informa-
tion for picking out a unique object
among those with same data.



All Matlab codes freely
available at this site!

Part I: Linear Inverse Problems
1 Introduction
2 Naïve reconstructions and inverse crimes
3 Ill-Posedness in Inverse Problems
4 Truncated singular value decomposition
5 Tikhonov regularization
6 Total variation regularization
7 Besov space regularization using wavelets
8 Discretization-invariance
9 Practical X-ray tomography with limited data
10 Projects

Part II: Nonlinear Inverse Problems
11 Nonlinear inversion
12 Electrical impedance tomography
13 Simulation of noisy EIT data
14 Complex geometrical optics solutions
15 A regularized D-bar method for direct EIT
16 Other direct solution methods for EIT
17 Projects

http://wiki.helsinki.fi/display/mathstatHenkilokunta/Inverse+Problems+Book+Page


Outline

Introduction

Reconstruction with linear forward maps
X-ray tomography and its applications
The principle of X-ray tomography
Non-uniqueness, ghosts, and ill-posedness
Regularization by minimizing a penalty functional
Low-dose 3D dental imaging

Reconstruction with nonlinear forward maps
Electrical impedance tomography (EIT) and its applications
The principle of EIT
Non-uniqueness, ghosts, and ill-posedness
Regularization by nonlinear low-pass filtering
Further development: edge-preserving EIT

Open problems



The VT device was developed in 2001–2012 by
Nuutti Hyvönen
Seppo Järvenpää
Jari Kaipio
Martti Kalke
Petri Koistinen
Ville Kolehmainen
Matti Lassas
Jan Moberg
Kati Niinimäki
Juha Pirttilä
Maaria Rantala
Eero Saksman
Henri Setälä
Erkki Somersalo
Antti Vanne
Simopekka Vänskä
Richard L. Webber



Application: dental implant planning, where a
missing tooth is replaced with an implant



Nowadays, a digital panoramic imaging device is
standard equipment at dental clinics

A panoramic dental image offers a
general overview showing all teeth
and other dento-maxillofacial struc-
tures simultaneously.

Panoramic images are not suitable
for dental implant planning because
of unavoidable geometric distortion.

•

X-ray source

Narrow detector



We reprogram the panoramic X-ray device so that
it collects projection data by scanning

(Loading video)


VTmove.mp4
Media File (video/mp4)



We reprogram the panoramic X-ray device so that
it collects projection data by scanning
Number of projection images: 11

Angle of view: 40 degrees

Image size: 1000×1000 pixels

The unknown vector f has
7 000 000 elements.



Here are example images of an actual patient:
navigation image (left) and desired slice (right).

Kolehmainen, Vanne, S, Järven-
pää, Kaipio, Lassas & Kalke 2006,
Kolehmainen, Lassas & S 2008

Cederlund, Kalke & Welander 2009,
Hyvönen, Kalke, Lassas, Setälä & S
2010, U.S. patent 7269241



The radiation dose of the VT device is
lowest among 3D dental imaging modalities

Modality µSv
Head CT 2100
CB Mercuray 558
i-Cat 193
NewTom 3G 59
VT device 13

[Ludlow, Davies-Ludlow, Brooks &
Howerton 2006]

The VT device has been available in
the international market since 2008.



These books are recommended for learning
the mathematics of practical X-ray tomography
1983 Deans: The Radon Transform and Some of Its Applications
1986 Natterer: The mathematics of computerized tomography
1988 Kak & Slaney: Principles of computerized tomographic imaging
1996 Engl, Hanke & Neubauer: Regularization of inverse problems
1998 Hansen: Rank-deficient and discrete ill-posed problems
2001 Natterer & Wübbeling: Mathematical Methods in Image
Reconstruction
2008 Buzug: Computed Tomography: From Photon Statistics to
Modern Cone-Beam CT
2008 Epstein: Introduction to the mathematics of medical imaging
2010 Hansen: Discrete inverse problems
2012 Mueller & S: Linear and Nonlinear Inverse Problems with
Practical Applications



Another great resource is Per Christian Hansen’s
3D tomography toolbox TVreg

TVreg: Software for 3D Total Variation Regularization (for
Matlab Version 7.5 or later), developed by Tobias Lindstrøm
Jensen, Jakob Heide Jørgensen, Per Christian Hansen, and
Søren Holdt Jensen.

Website: http://www2.imm.dtu.dk/ pcha/TVReg/
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Chest imaging is the standard application example
of EIT in this talk

Medical applications: monitoring
cardiac activity, lung function, and
pulmonary perfusion. Also, elec-
trocardiography (ECG) can be en-
hanced using knowledge about
conductivity distribution.



D-bar reconstruction of in vivo chest data

(Loading video)

[Montoya & Mueller 2012]


Dbar_chestvideo.mov
Media File (video/quicktime)



The most promising use of EIT is detection of
breast cancer in combination with mammography

ACT4 and mammography devices Radiolucent electrodes

Cancerous tissue is up to four times more conductive than healthy breast
tissue [Jossinet 1998]. The above experiment by David Isaacson’s team
measures 3D X-ray mammograms and EIT data at the same time.



Which of these three breasts have cancer?



Spectral EIT can detect cancerous tissue

[Kim, Isaacson, Xia, Kao, Newell & Saulnier 2007]



EIT can be used for heart imaging

Lab: Rensselaer Polytechnic Institute 1998

Article:
Mueller
Isaacson
Newell
1999



EIT can potentially be used for imaging changes
in vocal folds due to excessive voice use

Sao Paulo, February 27, 2013 Laukkanen
León
Lima
Liu
Moura
Seppänen
S



EIT can perhaps be used for imaging changes in
vocal folds due to dehydration

Fort Collins, March 10, 2015



EIT can be used for nondestructive testing:
here for crack detection in concrete structures

[Karhunen, Seppänen, Lehikoinen, Monteiro & Kaipio 2010]
[Karhunen, Seppänen, Lehikoinen, Monteiro, Kaipio, Blunt, Hyvönen]



EIT can be used for nondestructive testing:
here for water in concrete structures

[Hallaji, Seppänen & Pour-Ghaz 2015]

Water
Neutron EIT

20 min

30 min

16 hrs

[Hallaji, Seppänen & Pour-Ghaz 2015]
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Note that EIT data collection involves applying
several current patterns

Saline and agar phantom Apply current pattern cos θ

Measure the resulting voltages at the 32 electrodes



Note that EIT data collection involves applying
several current patterns

Saline and agar phantom Apply current pattern cos 2θ

Measure the resulting voltages at the 32 electrodes



Note that EIT data collection involves applying
several current patterns

Saline and agar phantom Apply current pattern cos 3θ

Measure the resulting voltages at the 32 electrodes



Note that EIT data collection involves applying
several current patterns

Saline and agar phantom Apply current pattern cos 4θ

Measure the resulting voltages at the 32 electrodes



Note that EIT data collection involves applying
several current patterns

Saline and agar phantom Apply current pattern cos 5θ

Measure the resulting voltages at the 32 electrodes



Note that EIT data collection involves applying
several current patterns

Saline and agar phantom Apply current pattern cos 16θ

Measure the resulting voltages at the 32 electrodes



The D-bar method works for real EIT data, such
as laboratory phantoms and in vivo human data

Saline and agar phantom Reconstruction (R = 4)

[Isaacson, Mueller, Newell & S 2004]
[Montoya 2012]



The mathematical model of EIT is the inverse
conductivity problem introduced by Calderón

Ω

Let Ω ⊂ R2 be the unit disc and let
conductivity σ : Ω→ R satisfy

0 < M−1 ≤ σ(z) ≤ M.

Applying voltage f at the boundary ∂Ω
leads to the elliptic PDE{

∇ · σ∇u = 0 in Ω,
u|∂Ω = f .

Boundary measurements are modelled
by the Dirichlet-to-Neumann map

Λσ : f 7→ σ
∂u
∂~n
|∂Ω.

Calderón’s problem is to re-
cover σ from the knowledge
of Λσ. It is a nonlinear and
ill-posed inverse problem.



Why is the forward map F : σ 7→ Λσ nonlinear?

Define a quadratic form Pσ for functions f : ∂Ω→ R by

Pσ(f ) =

∫
Ω
σ|∇u|2 dz , (1)

where u is the solution of the Dirichlet problem{
∇ · σ∇u = 0 in Ω,

u|∂Ω = f .

Now the map σ 7→ Pσ is nonlinear because u depends on σ in (1).
Physically, Pσ(f ) is the power needed for maintaining the voltage
potential f on the boundary ∂Ω. Integrate by parts in (1):

Pσ(f ) =

∫
∂Ω

f (σ
∂u
∂~n

) ds =

∫
∂Ω

f (Λσf ) ds.

Thus the map σ 7→ Λσ cannot be linear in σ.
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Ill-posed inverse problems are defined
as opposites of well-posed direct problems

Hadamard (1903): a problem is well-posed
if the following conditions hold.

1. A solution exists,
2. The solution is unique,
3. The solution depends
continuously on the input.

Well-posed direct problem:
Input σ, find infinite-precision data Λσ.

Ill-posed inverse problem:
Input noisy data Λδσ, reconstruct σ.



We illustrate the ill-posedness of EIT
using a simulated example

σ1

σ2



We apply the voltage distribution f (θ) = cos θ
at the boundary of the two different phantoms

σ1

σ2

u1
θ

u2



The measurement is the distribution of
current through the boundary

σ1

σ2

u1
θ

u2

σ1
∂u1

∂~n

θ

σ2
∂u2

∂~n

θ



The current data are very similar,
although the conductivities are quite different

σ1

σ2

σ1
∂u1

∂~n
σ2
∂u2

∂~n

0 π

2
π 3π

2
2π



Let us apply the more oscillatory distribution
f (θ) = cos 2θ of voltage at the boundary

σ1

σ2

u1

u2



The measurement is again the distribution of
current through the boundary

σ1

σ2

u1

u2

σ1
∂u1

∂~n

θ

σ2
∂u2

∂~n

θ



The current distribution measurements
are almost the same

σ1

σ2

σ1
∂u1

∂~n
σ2
∂u2

∂~n

0 π

2
π 3π

2
2π



EIT is an ill-posed problem: big differences in
conductivity cause only small effect in data

σ1

σ2

cos θ

cos 2θ

cos 3θ

cos 4θ

cos 5θ

cos 6θ



EIT is an ill-posed problem: noise in data causes
serious difficulties in interpreting the data

σ1

σ2

cos θ

cos 2θ

cos 3θ

cos 4θ

cos 5θ

cos 6θ



The forward map F : X ⊃ D(F )→ Y
does not have a continuous inverse!

Model space X = L∞(Ω)

Data space
Y = L(H1/2(∂Ω),H−1/2(∂Ω))

D(F ) F (D(F ))

σ

Λσ

Λσδ
δ

F

Furthermore, the noisy data Λδσ does not belong to the range F (D(F )).
So Hadamard’s conditions 1 and 3 fail for EIT. How about uniqueness?



Ghosts, or invisible structures, when using point
electrodes in electrical impedance tomography

[Chesnel, Hyvönen & Staboulis 2014]



Anisotropic, or matrix-valued, conductivities σ
lead to non-uniqueness in EIT

4
1

1 

2

1 

1

Let σ(x) = [σij(x)] be a symmetric
and positive-definite 2×2 matrix.
Define anisotropic DN map by

Λσ(f ) = ν·σ∇u
∣∣
∂Ω
.

Let F : Ω→ Ω be a diffeomorphism
with F |∂Ω = Identity. Then

ΛF∗σ = Λσ,

where F∗ is the push-forward:

(F∗σ)ij(y) =
1

det
[
∂F i

∂x j (x)
] 2∑

p,q=1

∂F i

∂xp (x)
∂F j

∂xq (x)σpq(x)

∣∣∣∣∣∣
x=F−1(y)
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Regularization means constructing a continuous
map Γα : Y → X that inverts F approximately

Model space X = L∞(Ω)

Data space
Y = L(H1/2(∂Ω),H−1/2(∂Ω))

D(F ) F (D(F ))

σ

Λσ

Λσδ
δ

F

Γα
Γα(Λδσ)

Regularization must be based on combining the incomplete measurement
data with a priori information about the conductivity.



A regularization strategy needs to be constructed
so that the assumptions below are satisfied

A family Γα : Y → X of continuous mappings parameterized by
0 < α <∞ is a regularization strategy for F if

lim
α→0
‖Γα(Λσ)− σ‖X = 0

for each fixed σ ∈ D(F ).

Further, a regularization strategy with a choice α = α(δ) of
regularization parameter is called admissible if

α(δ)→ 0 as δ → 0,

and for any fixed σ ∈ D(F ) the following holds:

sup
Λδ
σ

{
‖Γα(δ)(Λδσ)− σ‖X : ‖Λδσ − Λσ‖Y ≤ δ

}
→ 0 as δ → 0.



There are many EIT reconstruction methods:

Linearization: Barber, Bikowski, Brown, Calderón, Cheney, Isaacson,
Mueller, Newell
Iterative regularization: Dobson, Gehre, Harbrecht, Hohage, Hua, Jin,
Kaipio, Kindermann, Kluth, Leitão, Lechleiter, Lipponen, Maass,
Neubauer, Rieder, Rondi, Santosa, Seppänen, Tompkins, Webster, Woo
Bayesian inversion: Fox, Kaipio, Kolehmainen, Nicholls, Pikkarainen,
Ronkanen, Seppänen, Somersalo, Vauhkonen, Voutilainen
Resistor network methods: Borcea, Druskin, Mamonov, Vasquez
Layer stripping: Cheney, Isaacson, Isaacson, Somersalo
D-bar methods: Astala, Bikowski, Bowerman, Delbary, Hamilton,
Hansen, Herrera, Isaacson, Kao, Knudsen, Lassas, Montoya, Mueller,
Murphy, Nachman, Newell, Päivärinta, Perämäki, Saulnier, Santacesaria,
S, Tamasan, Tamminen
Teichmüller space methods: Kolehmainen, Lassas, Ola, S
Methods for partial information: Alessandrini, Ammari, Bilotta, Brühl,
Eckel, Erhard, Gebauer, Hanke, Harrach, Hyvönen, Ide, Ikehata, Isozaki,
Kang, Kim, Kress, Kwon, Lechleiter, Lim, Maass, Morassi, Nakamura,
Nakata, Potthast, Rossetand, Seo, Sheen, S, Staboulis, Turco, Uhlmann,
Wang, . . .



1. Tikhonov regularization: write a penalty functional

Φ(x) = ‖Λσ̃ − Λδσ‖2Y + α‖σ̃‖2X ,

and define Γα(Λδσ) by Φ(Γα(Λδσ)) = min
σ̃∈X
{Φ(σ̃)}.

Pro: The same code applies to many problems.
Con: Repeated solution of direct problem needed.
Con: Prone to get stuck in local minima.

Current theory of iterative regularization does not
cover full EIT because of high degree of nonlinearity.
[Lechleiter-Rieder 2006&2008, Harbrecht-Hohage 2009, Jin-Maass 2012].

2. Problem-specific regularization
Pro: Can deal efficiently with a specific nonlinearity.
Con: Each code applies to only one problem.

EIT: [Ikehata 2002, Ikehata-S 2004, Knudsen-Lassas-Mueller-S 2009]



I recommend these books for studying iterative
regularization for nonlinear inverse problems

1996 Engl, Hanke & Neubauer:
Regularization of inverse problems
2008 Kaltenbacher, Neubauer & Scherzer:
Iterative regularization methods for nonlinear ill-posed problems
2012 Schuster, Kaltenbacher, Hofmann & Kazimierski:
Regularization methods in Banach spaces



This part of the talk is a joint work with

David Isaacson, Rensselaer Polytechnic Institute, USA

Kim Knudsen, Technical University of Denmark

Matti Lassas, University of Helsinki, Finland

Jon Newell, Rensselaer Polytechnic Institute, USA

Jennifer Mueller, Colorado State University, USA



There exists a nonlinear Fourier transform
adapted to electrical impedance tomography
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Nonlinear IFFT



The nonlinear Fourier transform can be recovered
from infinite-precision EIT measurements

Λσ -
BIE

@
@
@
@
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Nonlinear IFFT

6
Ideal
measurement

[Nachman 1996]



Measurement noise prevents the recovery of the
nonlinear Fourier transform at high frequencies
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Nonlinear IFFT

6
Practical
measurement



We truncate away the bad part in the transform;
this is a nonlinear low-pass filter

-
BIE

6
Practical
measurement

-
Lowpass



There is currently only one regularized method for
reconstructing the full conductivity distribution

-
BIE

?

Nonlinear
IFFT

6
Practical
measurement

-
Lowpass

[S, Mueller & Isaacson 2000]
[Knudsen, Lassas, Mueller & S 2009]



Solve boundary integral equation

ψ( · , k)|∂Ω = e ikz − Sk(Λσ − Λ1)ψ

for every complex number k ∈ C \ 0.

Evaluate the scattering transform:

t(k) =

∫
∂Ω

e ikz(Λσ − Λ1)ψ(·, k) ds.

Fix z ∈ Ω. Solve D-bar equation

∂

∂k
µ(z , k) =

t(k)

4πk
e−i(kz+kz)µ(z , k)

with µ(z , · )− 1 ∈ Lr ∩ L∞(C).

Reconstruct: σ(z) = (µ(z , 0))2.

Solve boundary integral equation

ψδ( · , k)|∂Ω = e ikz − Sk(Λδσ − Λ1)ψδ

for all 0 < |k| < R = − 1
10 log δ.

For |k| ≥ R set tδR(k) = 0. For |k| < R

tδR(k) =

∫
∂Ω

e ikz(Λδσ − Λ1)ψδ(·, k) ds.

Fix z ∈ Ω. Solve D-bar equation

∂

∂k
µδR(z , k) =

tδR(k)

4πk
e−i(kz+kz)µδR(z , k)

with µδR(z , · )− 1 ∈ Lr ∩ L∞(C).

Set Γ1/R(δ)(Λδσ) := (µδR(z , 0))2.

Infinite-precision data: Practical data:



Main result: nonlinear low-pass filtering yields a
regularization strategy with convergence speed

Theorem (Knudsen, Lassas, Mueller & S 2009)
There exists a constant 0 < δ0 < 1, depending only on M and ρ,
with the following properties. Let σ ∈ D(F ) be arbitrary and
assume given noisy data Λδσ satisfying

‖Λδσ − Λσ‖Y ≤ δ < δ0.

Then Γα with the choice

R(δ) = − 1
10

log δ, α(δ) =
1

R(δ)
,

is well-defined, admissible and satisfies the estimate

‖Γα(δ)(Λδσ)− σ‖L∞(Ω) ≤ C (− log δ)−1/14.



Regularized reconstructions from simulated data
with noise amplitude δ = ‖Λδσ−Λσ‖Y

δ ≈ 10−6 δ ≈ 10−5 δ ≈ 10−4 δ ≈ 10−3 δ ≈ 10−2

The percentages are the relative square norm errors in the reconstructions.



The observed radii are better (=larger) than those
given by the theoretical formula R(δ) = − 1

10 log δ

R(δ) = − 1
10 log δ

Practical radii

δ

R



This is a brief history of the two-dimensional
regularized D-bar method for EIT

1966 Faddeev: Complex geometric optics (CGO) solutions

1987 Sylvester and Uhlmann: CGO solutions for inverse
boundary-value problems; uniqueness for 3D EIT with smooth
conductivities and infinite-precision data

1988 R. G. Novikov: Outline of the core ideas of the D-bar
method; no rigorous proof

1996 Nachman: Uniqueness and reconstruction for 2D EIT
with C 2 conductivities and infinite-precision data

2000 S, Mueller and Isaacson: Numerical implementation of
Nachman’s proof using a Born approximation

2006 Isaacson, Mueller, Newell and S: Application of the D-bar
method to EIT data measured from a human subject

2009 Knudsen, Lassas, Mueller and S: Regularization proof



The D-bar regularization strategy automatically
handles non-uniqueness from anisotropy

4
1

1 

2

1 

1

[Henkin & Santacesaria, Inverse Problems 26 (2010)]
[Hamilton, Lassas & S, Inverse Problems 30 (2014)]



Take-home messages from our overview of
electrical impedance tomography

Object Data

Direct problem

Inverse problem

Uniqueness does not save us.
Even with an injective forward map,
failure of Hadamard’s condition 3
means that we need regularization
for solving the inverse problem.

Non-uniqueness can be handled.
Our stable regularization strategy
just needs enough a priori informa-
tion for picking out a unique object
among those with same data.



All Matlab codes freely
available at this site!

Part I: Linear Inverse Problems
1 Introduction
2 Naïve reconstructions and inverse crimes
3 Ill-Posedness in Inverse Problems
4 Truncated singular value decomposition
5 Tikhonov regularization
6 Total variation regularization
7 Besov space regularization using wavelets
8 Discretization-invariance
9 Practical X-ray tomography with limited data
10 Projects

Part II: Nonlinear Inverse Problems
11 Nonlinear inversion
12 Electrical impedance tomography
13 Simulation of noisy EIT data
14 Complex geometrical optics solutions
15 A regularized D-bar method for direct EIT
16 Other direct solution methods for EIT
17 Projects

http://wiki.helsinki.fi/display/mathstatHenkilokunta/Inverse+Problems+Book+Page
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This part is a joint work with

Sarah Hamilton, University of Helsinki, Finland

Andreas Hauptmann, University of Helsinki, Finland
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The CGO sinogram is more intuitive geometrically
than the DN matrix: here a simple example

(Loading video)

Conductivity DN matrix CGO sinogram


CGOvideo.mov
Media File (video/quicktime)



Let us use the CGO sinogram for correcting the
contrast in a D-bar reconstruction

Conductivity Reconstruction



We modify the contrast in the reconstruction
using a parameter 0 ≤ s ≤ 1

(Loading video)


CEvideo3.mov
Media File (video/quicktime)



(Loading video)


CEvideo2.mov
Media File (video/quicktime)



(Loading video)


CEvideo1.mov
Media File (video/quicktime)



We choose the best (contrast-enhanced) image
from the Ambrosio-Tortorelli segmentation flow

This provides a link between imaging methods and PDE-based inversion.



The CGO-controlled Ambrosio-Tortorelli flow
gives a nonlinear, edge-preserving EIT method

Conductivity D-bar reconstruction AT and D-bar

[Hamilton, Hauptmann & S 2014]
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Open problems



Uniqueness: can two different objects produce
the same infinite-precision data?

Model space X Data space Y

D(F ) F (D(F ))

x

x̃ F (x)=F (x̃)

m

F

F



Conditional stability research studies the
difference between images and preimages

Model space X Data space Y

D(F ) F (D(F ))

x̃

x

F x̃

Fxm
F

Conditional stability results have the form ‖x − x̃‖X ≤ f (‖Fx − F x̃‖Y ),
where f : R+ → R+ is a continuous function satisfying f (0) = 0.
However, in general the data is not in the range: m 6∈ F (D(F )).



The D-bar method based on the Schrödinger
equation (σ ∈ C 2(Ω)) is currently most developed

Theoretical studies

Uniqueness, no-noise reconstruction
1996 Nachman

Conditional stability
1997 Liu

Regularization strategy
2009 Knudsen, Lassas, Mueller, S

Computational methods

Feasibility study
2000 S, Mueller, Isaacson
2003 Mueller, S
2004 Knudsen, Mueller, S

Reconstruction from measured data
2004 Isaacson, Mueller, Newell, S
2006 Isaacson, Mueller, Newell, S
2007 Murphy, Mueller, Newell
2010 deAngelo, Mueller

Real-time algorithm
2014 Dodd, Mueller



The D-bar method based on a 2×2 system
(σ ∈ C 1(Ω)) extends to complex impedances

Theoretical studies

Uniqueness, no-noise reconstruction
1997 Brown, Uhlmann
2000 Francini

Conditional stability
2001 Barceló, Barceló, Ruiz
2010 Beretta, Francini

Regularization strategy
TO DO!

Computational methods

Feasibility study
2001 Knudsen, Tamasan
2003 Knudsen
2012 Hamilton, Herrera, Mueller,

von Herrmann
2013 Hamilton, Mueller

Reconstruction from measured data
2015 Herrera, Vallejo, Mueller, Lima



The D-bar method based on Beltrami equation
can deal with discontinuities (σ ∈ L∞(Ω))

Theoretical studies

Uniqueness, no-noise reconstruction
2003 Astala, Päivärinta
2005 Astala, Lassas, Päivärinta

Conditional stability
2007 Barceló, Faraco, Ruiz
2008 Clop, Faraco, Ruiz

Regularization strategy
TO DO!

Computational methods

Feasibility study
2010 Astala, Mueller, Päivärinta, S
2011 Astala, Mueller, Päivärinta,

Perämäki, S
2014 Astala, Päivärinta, Reyes, S

Reconstruction from measured data
TO DO!



The D-bar method based on Beltrami equation
seems to have the appropriate convergence

R = 20 R = 40 R = 50 True

[Astala, Päivärinta, Reyes & S 2014]



Tailor-made regularization is needed for many
nonlinear inverse problems, not only EIT

A nonlinear Fourier transform ap-
proach is available for seismic to-
mography (positive-energy CGO)
and near-infrared optical tomogra-
phy (negative-energy CGO).
Regularization strategies for them
would lead to

I effective subsurface imaging
and geophysical prospection,
and

I monitoring for hemorrhages in
neonatal brains.

Currently there are no regulariza-
tion results available for nonlinear
inverse boundary-value problems for
parabolic or hyperbolic PDE’s.
Such regularization strategies and
their computational implementa-
tions would be a paradigm shift in in-
verse problems and imaging science.



http://aip2015.fips.fi



Thank you for your attention!
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