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The model case: The homogeneous free equation

The non uniqueness of the Rn-problem

(∆ + k2)u = f

is due to the existence of entire solutions of the homogeneous
equation

(∆ + k2)u = 0

the so called generalized eigenfunction, this fact makes Helmholtz
equation of hyperbolic type, its Fourier symbol vanishes on the
sphere of radius k. A class of solutions of the homogeneous
equation are the plane waves parameterized by its frequency k and
its direction ω (the direction of its wave front set).

ψ0(k , ω, x) = e ikω·x (1)

The Fourier transform of this function is a Dirac delta at the point
kω on the sphere of radius k .
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Herglotz wave functions

In scattering theory an important role is played by the
superposition with a density g(ω) of plane waves, namely

ui (x) =

∫
Sn−1

e ikω·xg(ω)dσ(ω). (2)

If g is a function in L2(Sn−1), ui is called a Herglotz wave
function, which is also an entire solution of the homogeneous
Helmholtz equation.
For the solvability of inverse problems, the Herglotz wave functions
are important, see [CK]. For instance the scattering amplitudes
used in inverse problems (either in the acoustic, the Schrödinger or
the obstacle inverse problems) are not dense in L2(Sn−1), if there
exists a solution of an associated problem which is a Herglotz wave
function. This density property is cruptial from the spectral point
of view.
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F.T. of measures

Herglotz wave functions are just the distributional Fourier
transforms of L2(Sn−1)-densities on the sphere. They are in the
range of the operator ”extension of the Fourier transform”

Ek(g)(x) = ĝdσ(kx), (3)

for a function g ∈ L2(Sn−1).

Theorem (Herglotz, Hartman and Wilcox)

An entire solution v of the equation (∆ + k2)v = 0 is a H. w. f. if
and only if it satisfies

sup
R

1

R

∫
|x |<R

|v(x)|2dx <∞. (4)

Furthermore if g is its density, we have

lim sup
R→∞

1

R

∫
|x |<R

|v(x)|2dx ∼ Ckn−1‖g‖2
L2(Sn−1) (5)
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F.T. of measures

We give a geometric proof, extended to the Fourier transform of
measures carried on submanifolds of codimension d in Rn and
whose density is in L2.
Consider the case k = 1. If u is a tempered distribution solution of
(∆ + 1)u = 0, then its Fourier transform û is supported in Sn−1,
denoting g = û, we can rewrite the first statement of above
theorem as a special case of

Theorem (Agmon-Hörmander)

Let M be a C1 submanifold of codimension d in Rn. Let us denote
by dσ the induced measure. Assume that K is a compact subset of
M. If u ∈ S ′ with Fourier transform supported in K and given by
an L2(M)-function, û = g(ξ)dσ(ξ) then there exists C > 0

sup
R>0

1

Rd

∫
|x |≤R

|u(x)|2dx ≤ C

∫
M
|g(ξ)|2dσ(ξ). (6)
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Proof

By using a partition of unity we may assume that K is small and
we can describe M by the equation ξ′′ = h(ξ′), where
ξ′ = (ξ1, ..., ξn−d) and ξ′′ = (ξn−d+1, ..., ξn) and h ∈ C1.
Let us write the measure dσ = a(ξ′)dξ′, for a positive and
continuous function a, we have
û(ξ) = û(ξ′, h(ξ′))dσ = g(ξ′)a(ξ′)dξ′ and

u(x) = û(e ix ·ξ) = (2π)−n
∫
Rn−d

e i(x
′·ξ′+x ′′·h(ξ′))g(ξ′)a(ξ′)dξ′

= (2π)−n
∫
Rn−d

e ix
′·ξ′F (x ′′, ξ′)dξ′,

where F (x ′′, ξ′) = e ix
′′·h(ξ′)g(ξ′)a(ξ′). By Plancherel formula in x ′

we have ∫
Rn−d

|u(x ′, x ′′)|2dx ′ =

∫
Rn−d

|û(·, x ′′)(ξ′)|2dξ′
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=

∫
Rn−d

|F (x ′′, ξ′)|2dξ′ =

∫
Rn−d

|ĝ(ξ′)|2a(ξ′)2dξ′ ≤ C‖g‖2
L2(M).

1

Rd

∫
BR

|u(x)|2dx ′dx ′′ ≤

1

Rd

∫
[−R,R]d

∫
Rn−d

|u(x ′, x ′′)|2dx ′dx ′′ ≤ C‖g‖2
L2(M)

Corollary

Assume g ∈ L2(Sn−1) and let us define

u(x) =

∫
Sn−1

e ikθ·xg(θ)dσ(θ).

Then

‖|v‖|2∗ := sup
R≥0

1

R

∫
|x |<R

|u(x)|2dx ≤ Ckn−1‖g‖2
L2(Sn−1). (7)
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Equivalence

Theorem

Assume u ∈ L2
loc ∩ S ′ such that

lim sup
R→∞

1

Rd

∫
|x |<R

|u(x)|2dx <∞.

Let Ω be an open set in Rn such that û restricted to Ω, g = û|Ω, is
compactly supported in a C∞-submanifold M of codimension d,
then g ∈ L2(M), and furthermore∫

M
|g |2dσ ≤ C lim sup

R→∞

1

Rd

∫
|x |<R

|u(x)|2dx . (8)
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The mollification

Lemma

Let u ∈ L2
loc ∩ S ′ and χ ∈ C∞0 supported on B(0, 1), and denote

gε = û(·) ? ε−nχ(·/ε). Then, for fixed d > 0, we have

‖gε‖2
L2 ≤ Cd(χ)ε−dKd(ε),

where Kd(ε) = supRε≥1
1
Rd

∫
|x |<R |u(x)|2dx and Cd(χ) only

depends on χ.

‖gε‖2
L2 = ‖u(·)χ̂(ε(·))‖2

L2 = (

∫
|εx |≤1

+
∞∑
j=1

∫
2j−1≤|εx |≤2j

)|u(x)χ̂(εx)|2dx

≤ sup
|y |≤1

χ̂(y)2

∫
|εx |≤1

|u(x)|2+
∞∑
j=1

sup
2j−1≤|y |≤2j

χ̂(y)2

∫
2j−1≤|εx |≤2j

|u(x)|2
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≤ ε−d( sup
|y |≤1

|χ̂(y)|2εd
∫
|εx |≤1

|u(x)|2dx

+
∞∑
j=1

sup
2j−1≤|y |≤2j

|χ̂(y)|22jd · sup
j=1,2,...

(
2j

ε
)−d

∫
2j−1≤|εx |≤2j

|u(x)|2dx)

≤ ε−dCd(χ) sup
εR≥1

R−d
∫
B(0,R)

|u(x)|2dx .

where

Cd(χ) = sup
|y |≤1

|χ̂(y)|2 +
∞∑
j=1

sup
2j−1≤|y |≤2j

|χ̂(y)|22jd .

Going back to the proof of the theorem, let us see that g is an
L2-density on M.
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End of equivalence

Since g is supported on M, then gε is supported on
Mε = {x ∈ Rn : d(x ,M) ≤ ε}}; since u ∈ S ′ then gε → g en S ′.
Let us take a test functions ψ ∈ C∞0 :

|g(ψ)| = | lim
ε→0

(gε)(ψ)| = lim
ε→0
|
∫
Mε

(û ? χε(x))ψ(x)dx |

≤ lim
ε→0

(

∫
|gε|2dx)1/2(

∫
Mε

|ψ(x)|2dx)1/2

≤ lim
ε→0

(ε−d
∫
Mε

|ψ(x)|2dx)1/2(Kd(ε)Cd)1/2,

and hence, since ε−d
∫
Mε
|ψ(x)|2dx →

∫
M |ψ(x)|2dσ(x), we have

|g(ψ)| ≤ lim sup
ε→0

K (ε)1/2‖ψ‖L2(M)C
1/2
d ,

this means that g is a function in L2(M) such that∫
M
|g(θ)|2dσ(θ) ≤ Cd lim sup

ε→0
K (ε),
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The direct problem. Existence and estimates

Corollary

A solution of the homogeneous Helmholtz equation is a Herglotz
wave function if and only if Hartman-Wilcox condition (4) holds

Notice that the theorems give us an equivalence of L2(Sn−1)-norm
of the density with the norm ‖| · ‖|∗ of the solution.
Let us define the Besov space

Bs = {v ∈ L2
loc : ‖v‖Bs =

∞∑
j=0

Rs
j+1(

∫
Ωj

|v |2dx)1/2 <∞}, (9)

where Rj = 2j−1 if j ≥ 1, R0 = 0 and Ωj = {x : Rj ≤ |x | ≤ Rj+1}.
The elements of the dual B∗s are the functions v ∈ L2

loc with

‖v‖2
B∗s

= sup
j=1,2...

R−2s
j

∫
Ωj

|v |2dx ≤ ∞ (10)
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This norm is equivalent to ‖| · ‖|∗ with 2s = d , when the
supremum there is taken over R > 1.

Corollary

Let M be a C1-submanifold in Rn of codimension d and K a
compact contained in M. Then the operator given by the
restriction of the Fourier transform to K, defined for v ∈ S as

T (v) = v̂|K ∈ L2
K (dσ) (11)

can be extended by continuity to an onto map from Bd/2 to
L2
K (dσ).

The adjoint of T , defined for ψ ∈ L2
K (dσ) by

T ∗(ψ) = (̂ψdσ) ∈ B∗d/2 (12)

is one to one from (8) and has closed range, hence T is onto, see
[Rudin,Thm 4.15.]
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This corollary is a dual trace theorem at the end point, which
means that it gives a substitute of the Sobolev space W d/2,2(Rn)
in order to obtain traces in L2 when restricted to a submanifold of
codimension d . To compare with, let us recall the classical trace
theorem in Sobolev spaces.

Theorem

Let M be a C∞ manifold of codimension d and α > d/2, then
there exists a bounded operator

τ : W α,2(Rn)→W α−d/2,2(M),

such that for ψ ∈ C∞0 , τ(ψ) = ψ|M . This operator is called the
trace operator on M and τ(f ) the trace of f on M which we also
denote by f|M .
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Dual trace theorem

Given ε ≥ 0, write α = d/2 + ε. Then for every ε ≥ 0,

‖τ(g)‖L2(M) ≤ C‖g‖W d/2+ε,2(Rn) = ‖ĝ‖L2((1+|ξ|2)d/2+εdξ).

If we take ĝ = f , we obtain that

‖τ(f̂ )‖L2(M) ≤ C‖f ‖L2((1+|x |2)d/2+εdx).

This means that the restriction operator

Tf = f̂|M : L2(1 + |x |2)d/2+ε → L2(M) (13)

and its adjoint

T ∗(ψ) = (̂ψdσ) (14)

‖T ∗(ψ)‖L2((1+|ξ|2)−d/2−εdξ) ≤ C‖ψ‖L2(M). (15)

This inequality can also be written as

sup
R≥1

1

Rd/2+ε

∫
B(0,R)

|T ∗(ψ)(ξ)|2dξ ≤ C‖ψ‖2
L2(M). (16)

Estimate (6) is the above inequality for ε = 0.
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Stein-Tomas operator

Theorem

T ∗T (f ) = d̂σ ? f : Bd/2 → B∗d/2. (17)

In the case M = Sn−1 this operator is related to the imaginary part
of the free resolvent. Formula (17) gives a factorization of this
imaginary part when considered as an operator from some space to
its dual, by inserting the intermediate L2(Sn−1). Let us define

Ik f (x) =
1

k
(d̂σk ∗ f )(x), (18)

where dσk is the measure on the sphere of radius k . Consider
norm ‖| · ‖|∗ and which is the dual of

‖u‖B̃1/2
=
∞∑
−∞

(
Rj

∫
Ωj

|u(x)|2dx

)1/2

, (19)

It allows dilations as opposite to supR>1 [ Kenig, Ponce and Vega]
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Corollary

There exists a constant C > 0 uniform in k such that

‖|Ik f ‖|∗ ≤ Ck−1‖f ‖B̃1/2
(20)

Proof: We reduce to the case k = 1, noticing that for
uk(x) = u(x/k), we have

‖|fk‖|∗ = k(n−1)/2‖|f ‖|∗,

‖fk‖B̃1/2
= k(n+1)/2‖f ‖B̃1/2

and
(Ik f )(x/k) = k−2I1(fk)(x).

The case k = 1 can be proved from Hartman-Wilcox, duality and
T ∗T -argument.
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The Restriction of the Fourier Transform

Given f ∈ Lp(Rn) and a submanifold M in Rn, when does it make
sense to restrict f̂ to M in the sense of this restriction being a
function in Lt(M)? We are going to study the case M = Sn−1,
starting with t = 2. It is important to remark that in these
theorems the positiveness of curvature of the sphere plays a
fundamental role. We start will the dual theorem

Theorem (Extension theorem)

Let ψ be an L2(Sn−1) density, then its extension T ∗ψ = ψ̂dσ is in

Lq(Rn) , for q ≥ 2(n+1)
n−1 , i.e. if q satisfies the relation

1/2− 1/q ≥ 1/(n + 1). (21)

Furthermore we have the estimate

‖T ∗ψ‖Lq(Rn) ≤ C‖ψ‖L2(Sn−1). (22)
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The Restriction theorem

Corollary (Stein-Tomas )

Let f ∈ Lp(Rn) where p ≤ 2(n+1)
n+3 we can define Tf = f̂|Sn−1

as a

L2 density and it holds

‖Tf ‖L2(Sn−1) ≤ C‖f ‖Lp (23)

Remark 1: The range of q is sharp: Take a non negative function
φ ∈ C∞0 and construct (φδ)(ξ′, ξn) = φ( ξ

′

δ ,
ξn−en
δ2 ). Then

φ̂δ(x) = e iδ
2xnδn+1φ(δx ′, δ2xn)

and hence ‖T φ̂δ‖Lt(Sn−1) = ‖φδ‖Lt(Sn−1) ≥ Cδ(n−1)/t and

‖φ̂δ‖Lp ≤ Cδn+1−(n+1)/p, where p′ = q. Assume that

‖Tψ‖Lt(Sn−1) ≤ C‖ψ‖Lp , (24)

and take ψ = φ̂δ, then if δ → 0 , we obtain the necessary condition
(n + 1)/q = (n + 1)(1− 1

p ) < (n − 1)/t.
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Remark 2:There is another necessary condition that comes from
the evaluation of T ∗(1) in term of Bessel function given by
Funk-Ecke formula. That is the constrain q > 2n/(n − 1). The
sufficiency of (n + 1)/q < (n− 1)/t, together with q > 2n/(n− 1)
to have inequality (24) is known as the ”Restriction conjecture”,
an open question in classical Fourier Analysis. Notice that in the
particular case t = 2 we obtain the range of the Corollary.
Remark 3: We can write for ωn the measure of the sphere:

|ψ̂dσ(ξ)| =

∫
Sn−1

e ix ·ξψ(x)dσ(x)| ≤ ‖ψ‖1/2
L2(Sn−1)

ω
1/2
n .

Then it suffices to prove the theorem at the end point q = 2(n+1)
n−1 .
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Estimate of the mollification with resolution ε of a measure on the
sphere with density f .

Lemma

Let χ ∈ S, denote dσε = f (·)dσ(·) ? ε−nχ(·/ε), where
f ∈ L∞(Sn−1) then

supx |dσε(x)| ≤ Cε−1

Proof: We make a reduction to the case where χ is compactly
supported(”Schwartz tails argument)”: Take a C∞0 partition of
unity in Rn such that

∞∑
j=0

ψj(x) = 1,

where ψ0 is supported in B(0, 1) and ψj = ψ(2−jx) for j > 0, and
ψ is supported in 1/2 ≤ |x | ≤ 2.
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We take
∞∑
j=0

ψj(ε
−1x) = 1.

Now write

dσε(x) = dσ(·) ? ε−n
∑

ψj(ε
−1(·))χ(·/ε),

Notice that the jth term , j > 0 is an integral on the sphere of
radius 1 centered at x of a function supported on the annulus
2j−1ε ≤ |y | ≤ 2jε. In this annulus, since χ is rapidly decreasing, we
have:

|χ(ε−1x)| ≤ CN

(1 + 2j)N
,

Hence

|dσ(·) ? ε−nψj(ε
−1(·))χ(·/ε)(x)| ≤ CN

(2jε)n−1

(1 + 2j)N
ε−n.

By taking N big enough, the sum in j converges bounded by Cε−1.
(The term j = 0, satisfies trivially the inequality) .
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Proof of the extension thm.

Case the case L2 → Lp
′
, for p′ > 2(n+1)

n−1 , i.e.
1/2− 1/p′ > 1/(n + 1).
T ∗T -argument:
Stein-Tomas operator: f → d̂σ ∗ f = K (f ) bounded from
Lp → Lp

′
:

Facts d̂σ(x) = Cn

J n−2
2

(|x |)

|x |
n−2

2

Asymptotics and dyadic decomposition.
Kj(f ) = ψj d̂σ ∗ f
Interpolation ‖Kj‖L1→L∞ ≤ C2−j(n−1)/2 and ‖Kj‖L2→L2 ≤ C2j

Geometric series.
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It follows by dilations:

Corollary

If v is a Herglotz wave function corresponding to the eigenvalue k2

with density g, then for

1/2− 1/q ≥ 1/(n + 1)

it holds
‖v‖Lq ≤ Ck−n/q‖g‖L2(Sn−1). (25)

Corollary

Let k > 0, and consider Ik f (x) = 1
k (d̂σk ∗ f )(x). Then, for

1

p
− 1

q
≥ 2

n + 1
and

1

p
+

1

q
= 1,

we have ‖Ik f ‖Lq ≤ Ckn( 1
p
− 1

q
)−2‖f ‖Lp
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Transmision eigenvalues
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Estimates for the free resolvent

The outgoing solution of the equation in Rn

(∆ + k2)u = f (26)

is the function

u(x) =

∫
Φ(x − y)f (y)dy .

In the F.T. side the outgoing fundamental solution Φ(x) is

Φ̂(ξ) = (−|ξ|2 + k2 + i0)−1, (27)

In terms of the homogeneous distributions of degree −1, We can
obtain the expression from the one variable formula

lim
ε→0+

(t + iε)−1 = pv
1

t
+ iπδ,

extended to the Rn-function t = H(ξ) as far as we can take locally
H as a coordinate function in a local patch of a neighborhood in
Rn at any point ξ0 for which H(ξ0) = 0.
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Proposition

Let H : Rn → R such that | 5 H(ξ)| 6= 0 at any point where
H(ξ) = 0, then we can take the distribution limit

(H(ξ) + i0)−1 = lim
ε→0+

(H(ξ) + iε)−1. (28)

(H(ξ) + i0)−1 = pv
1

H(ξ)
+ iπδ(H) (29)

in the sense of the tempered distributions.

The distribution δ(H) is defined as

δ(H)(ψ) =

∫
H(ξ)=0

ψ(ξ)ω(ξ),

where ω is any (n − 1)-form such that ω ∧ dH = dξ. It is easily
seen, from the change of variable formula, that this integral does
not depends on the choice of the form ω. The existence of such ω
can be proved by using local coordinates in Rn adapted to the
manifold H(ξ) = 0.
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Limiting absorption principle

Let α any function which does not vanish at the points ξ with
H(ξ) = 0, then

δ(αH) = α−1δ(H).

We can choose an orthonormal moving frame on the tangent plane
to H(ξ) = 0, namely ω1, ..., ωn−1, for this frame we have
ω1 ∧ ... ∧ ωn−1 ∧ dH

|5H| = dξ, it follows that

δ(| 5 H|−1H) is the measure dσ induced by Rn on the
hypersurface H(ξ) = 0 and hence

δ(H) = | 5 H|−1dσ.

Let H(ξ) = −|ξ|2 + k2, then

Lemma

(H(ξ) + i0)−1 = lim
s↓0

(−|ξ|2 + k2 + is)−1 = pv
1

H(ξ)
+

iπ

2k
dσ (30)
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The resolvent

R+(k2)(f )(x) = (∆ + k2 + i0)−1(f )(x)

= p.v .

∫
Rn

e ix ·ξ
f̂ (ξ)

−|ξ|2 + k2
dξ +

iπ

2k
d̂σ ∗ f (x).

(31)

Estimates are given by estimates of the model Ik f = iπ
2k d̂σ ∗ f (x).

Retriction Thm for the F.T. → Selfdual Lp-estimate [KRS]

Theorem

For
2

n
≥ 1

p
− 1

q
≥ 2

n + 1
and

1

p
+

1

q
= 1,

we have ‖R+(k2)(f )‖Lq ≤ Ckn( 1
p
− 1

q
)−2‖f ‖Lp
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End point dual trace thm → Selfdual Besov estimate [AH-KPV]

Theorem

There exists a constant C > 0 uniform in k such that

sup
R

1

R

∫
B(0,R)

|R+(k2)(f )|2 ≤ Ck−1‖f ‖B̃1/2
(32)

Example: Agmon-Hormander estimate W (x) = (1 + |x |2)−1/2−ε

The model is Ik = T ∗T . Hopefully [RV]

Theorem

Let
1

n
≥ 1

p
− 1

2
≥ 1

n + 1
.

Then
‖R+(k2)(f )‖B̃∗

1/2
≤ kn( 1

p
− 1

2
)− 3

2 ‖f ‖Lp (33)
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Selfdual Lp. Proof

The restriction 2
n ≥

1
p −

1
q needs to be added, since the Fourier

multiplier (−|ξ|2 + k2)−1 behaves as a Bessel potential of order 2
when |ξ| → ∞.

Lemma (Mollification)

Let χ ∈ S, and

Pε(ξ) = pv
1

−|(·)|2 + 1
∗ ε−nχ(·/ε)(ξ),

then
|Pε(ξ)| ≤ Cε−1

Pε(ξ) = −pv

(∫
1−ε≤|η|≤1+ε

+

∫
1−ε>|η|

+

∫
|η|>1+ε

)
χε(ξ − η)

1

|η|2 − 1
dη

= I1 + I2 + I3.
Alberto Ruiz (UAM) An old fashion course. Luminy April 2015 Inverse scattering and Calderón’s problem. Tools: a priori estimates



Let us write

I1 = lim
δ→0

∫
δ≤|1−|η||≤ε

χε(ξ − η)
1

|η|2 − 1
dη

= lim
δ→0

(

∫ 1−δ

1−ε
+

∫ 1+ε

1+δ
)

∫
Sn−1

χε(ξ − rθ)
1

r2 − 1
rn−1dσ(θ),

Changing r = 2− s in the second integral we obtain

I1 = lim
δ→0

∫ 1−δ

1−ε
F (r , ξ)(r − 1)−1dr ,

where

F (r , ξ) =

∫
Sn−1

χε(ξ − rθ)
rn−1

(r + 1)
dσ(θ)

−
∫
Sn−1

χε(ξ − (2− r)θ)
(2− r)n−1

(3− r)
dσ(θ)

(34)
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If we observe that F (1, ξ) = 0, we may write by the mean value
theorem

|
∫ 1−δ

1−ε
F (r , ξ)(r − 1)−1dr | ≤ ε sup

1−ε≤r≤1
|∂F
∂r

(r , ξ)|. (35)

The radial derivative of the first integral in the definition of F ,
(34), is given by

∂

∂r
(
rn−1

r + 1
)

∫
Sn−1

χε(ξ−rθ)dσ(θ)+
rn−1

r + 1

∫
Sn−1

θ·5χε(ξ−rθ)dσ(θ).

The second of these integrals can be written as

ε−1
n∑

i=1

rn−1

r + 1

∫
Sn−1

θi (
∂

∂xi
χ)ε(ξ − rθ)dσ(θ),

both integrals are mollifications with resolution ε of the measures
dσ(θ) and θidσ(θ), which, from lemma 8, are bounded by
C (χ)ε−1. We have then |∂F∂r (r , ξ)| ≤ Cε−2, and hence
|I1| ≤ Cε−1.
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Proof of selfdual Lp-estimate

Alberto Ruiz (UAM) An old fashion course. Luminy April 2015 Inverse scattering and Calderón’s problem. Tools: a priori estimates



Uniform Sobolev estimate

Theorem

[KRS] Let a ∈ Cn and b ∈ C such that <b + |=a|2/4 6= 0, then for
any u ∈ C∞0 , there exists C independent of a and b such that, for
1/p − 1/q ∈ [2/(n + 1), 2/n]

‖u‖q ≤ C |<b + |=a|2/4|(1/p−1/q)n/2−1‖(∆ + a · 5+ b)u‖p. (36)

It contains the Carleman estimate and also Fadeev operator
estimate and for 1/p − 1/q = 2/n uniform Sobolev.

Corollary

Let ρ ∈ Cn such that ρ · ρ = 0. Assume that 2
n ≥

1
p −

1
q ≥

2
n+1 if

n > 2 and 1 > 1
p −

1
q ≥

2
3 if n = 2, where 1

p + 1
q = 1. Then there

exists a constant C independent of ρ and f such that

‖f ‖Lq ≤ C |ρ|n( 1
p
− 1

q
)−2‖(∆ + ρ · 5)f ‖Lp (37)

Just remark that ρ · ρ = 0 reads |<ρ| = |=ρ|, <ρ · =ρ = 0.Alberto Ruiz (UAM) An old fashion course. Luminy April 2015 Inverse scattering and Calderón’s problem. Tools: a priori estimates



Sketch of proof

1.

Theorem

Let z ∈ C, p and q in the range of theorem and u ∈ C∞0 then there
exists a constant C independent of z such that

‖u‖q ≤ C |z |(1/p−1/q)n/2−1‖(∆ + z)u‖p (38)

Proof: Use Phragmen-Lindelöv maximum principle

Proposition

Let F (z) analytic in the open half complex plane {Imz > 0} = C+

and continuous in the closure. Assume that |F (z)| ≤ L in ∂C+ and
that for any ε > 0 there exists C such that |F (z)| ≤ Ceε|z| as
|z | → ∞ uniformly on the argument of z. Then |F (z)| ≤ L for any
z ∈ C+.
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u and v in a dense class

F (z) = z−(1/p−1/q)n/2+1

∫
v(∆ + z)−1u

= z−(1/p−1/q)n/2+1

∫
(−|ξ|2 + z)−1v̂(ξ)û(ξ)dξ,

Continuity: Limiting absorption principle.
Boundedness at the boundary, estimates for resolvent
F (z) ≤ C‖u‖p‖v‖p.
General case: Reduce by phase shifts, rotations and dilations to
prove: There exists C2 > 0 such that for any real numbers ε and β
and any u ∈ C∞0

‖u‖q ≤ C2‖(∆ + ε(
∂

∂y1
+ iβ)± 1)u‖p. (39)

Fourier multiplier
(Tf )(ξ) = m(ξ)f̂ (ξ),

where
m(ξ) = (−|ξ|2 ± 1 + iε(ξ1 + β))−1, (40)
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End of proof
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All estimates together
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Extensions and open problems

1. Wave equation (Klein-Gordon) [KRS] useful in Control Theory.
2. Morrey-Campanato clases  Lα,p, [ChS], [CR], [W], [RV]: p > 1,
α < n/p.

‖V ‖α,p = sup
x ,R>0

Rα(R−n
∫
B(x ,R)

|V (y)|p)1/p

Case α = 2, p = n/α , Lp =  Lα,p. Uniform estimate

‖u‖L2(V ) ≤ C‖V ‖2
α,p‖(∆ + a · 5+ b)u‖L2(V−1)

Open range: (α = 2, 1 < p < (n − 1)/2)
Remark: Lp-selfdual estimate

‖u‖L2(V ) ≤ C‖V ‖2
n/2‖(∆ + a · 5+ b)u‖L2(V−1)

Kato-Stummel Class.
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3. Resolvent: X-rays transform class (open problem)

‖|V ‖|X = sup
x∈Rn,ω∈Sn−1

∫ ∞
0

V (x − tω)dt <∞ (41)

Radial case [BRV]

k‖R+(k2)f ‖L2(V ) + ‖∇R+(k2)f ‖L2(V ) ≤ C‖V ‖2
X‖f ‖L2(V−1)

Stein conjecture.
4. Uniform estimates for lower order perturbations: extension of
[AH] [KPV], Nirenberg-Walker estimate
5. In Riemannian manifolds ( [DsfKS]) Resolvent ,Carleman
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High energy reconstruction

ξ ∈ R2

n = 2

θj , ζj , ϕ ∈ Sn−1

ξ = ωj(ζj − θj)

ωj → ∞
θj → ϕ

ζj → ϕ

ϕ⊥ξ

ξ

ϕ

θ1 θ2 θ3

ω1

ω2

ω3

Figure 1. ξ belongs to spheres centered at −ωjθj with radii ωj

(Ewald spheres).

1
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