Theorem Lemma

Inverse scattering and Calderón's problem. Tools: a priori estimates

Alberto Ruiz (UAM)

An old fashion course. Luminy April 2015

April 12, 2015

Alberto Ruiz (UAM) An old fashion course. Luminy April 201 Inverse scattering and Calderón's problem. Tools: a priori estima

- Solutions of $(\Delta + k^2)u = 0$: Trace Theorems. Restriction of the Fourier transform. Herglotz wave functions.
- **The free resolvent. Uniform Sobolev estimates.**
- Consequences. Further results.

- 4 三 ト

The model case: The homogeneous free equation

The non uniqueness of the \mathbb{R}^n -problem

$$
(\Delta + k^2)u = f
$$

is due to the existence of entire solutions of the homogeneous equation

$$
(\Delta + k^2)u = 0
$$

the so called generalized eigenfunction, this fact makes Helmholtz equation of hyperbolic type, its Fourier symbol vanishes on the sphere of radius k . A class of solutions of the homogeneous equation are the plane waves parameterized by its frequency k and its direction ω (the direction of its wave front set).

$$
\psi_0(k,\omega,x) = e^{ik\omega \cdot x} \tag{1}
$$

The Fourier transform of this function is a Dirac delta at the point $k\omega$ on the sphere of radius k.

Herglotz wave functions

In scattering theory an important role is played by the superposition with a density $g(\omega)$ of plane waves, namely

$$
u_i(x) = \int_{S^{n-1}} e^{ik\omega \cdot x} g(\omega) d\sigma(\omega).
$$
 (2)

→ イモト イミト (時)

 Ω

If g is a function in $L^2(S^{n-1}),\ u_i$ is called a Herglotz wave function, which is also an entire solution of the homogeneous Helmholtz equation.

For the solvability of inverse problems, the Herglotz wave functions are important, see [CK]. For instance the scattering amplitudes used in inverse problems (either in the acoustic, the Schrödinger or the obstacle inverse problems) are not dense in $L^2(S^{n-1})$, if there exists a solution of an associated problem which is a Herglotz wave function. This density property is cruptial from the spectral point of view.

F.T. of measures

Herglotz wave functions are just the distributional Fourier transforms of $L^2(S^{n-1})$ -densities on the sphere. They are in the range of the operator "extension of the Fourier transform"

$$
E_k(g)(x) = \widehat{gd\sigma}(kx), \qquad (3)
$$

for a function $g\in L^2(S^{n-1}).$

Theorem (Herglotz, Hartman and Wilcox)

An entire solution v of the equation $(\Delta + k^2)v = 0$ is a H. w. f. if and only if it satisfies

$$
\sup_{R}\frac{1}{R}\int_{|x|
$$

Furthermore if g is its density, we have

$$
\limsup_{R \to \infty} \frac{1}{R} \int_{|x| < R} |v(x)|^2 dx \sim C k^{n-1} \|g\|_{L^2(S^{n-1})}^2 \tag{5}
$$

Alberto Ruiz (UAM) An old fashion course. Luminy April 201 Inverse scattering and Calderón's problem. Tools: a priori estima

F.T. of measures

We give a geometric proof, extended to the Fourier transform of measures carried on submanifolds of codimension d in \mathbb{R}^n and whose density is in L^2 .

Consider the case $k = 1$. If u is a tempered distribution solution of $(\Delta+1)u=0$, then its Fourier transform \hat{u} is supported in S^{n-1} , denoting $g = \hat{u}$, we can rewrite the first statement of above theorem as a special case of

Theorem (Agmon-Hörmander)

Let M be a C^1 submanifold of codimension d in \mathbb{R}^n . Let us denote by $d\sigma$ the induced measure. Assume that K is a compact subset of M. If $u \in S'$ with Fourier transform supported in K and given by an $L^2(M)$ -function, $\hat{u} = g(\xi)d\sigma(\xi)$ then there exists $C > 0$

$$
\sup_{R>0}\frac{1}{R^d}\int_{|x|\leq R}|u(x)|^2dx\leq C\int_M|g(\xi)|^2d\sigma(\xi).
$$
 (6)

 200

TELEVIS

Proof

By using a partition of unity we may assume that K is small and we can describe M by the equation $\xi''=h(\xi'),$ where $\xi'=(\xi_1,...,\xi_{n-d})$ and $\xi''=(\xi_{n-d+1},...,\xi_n)$ and $h\in\mathcal{C}^1.$ Let us write the measure $d\sigma = a(\xi')d\xi'$, for a positive and continuous function a, we have $\hat{u}(\xi) = \hat{u}(\xi',h(\xi'))d\sigma = g(\xi')a(\xi')d\xi'$ and

$$
u(x) = \hat{u}(e^{ix \cdot \xi}) = (2\pi)^{-n} \int_{\mathbf{R}^{n-d}} e^{i(x' \cdot \xi' + x'' \cdot h(\xi'))} g(\xi') a(\xi') d\xi'
$$

= $(2\pi)^{-n} \int_{\mathbf{R}^{n-d}} e^{ix' \cdot \xi'} F(x'', \xi') d\xi',$

where $F(x'', \xi') = e^{i x'' \cdot h(\xi')} g(\xi') a(\xi').$ By Plancherel formula in x' we have

$$
\int_{\mathbf{R}^{n-d}}|u(x',x'')|^2dx'=\int_{\mathbf{R}^{n-d}}|\widehat{u(\cdot,x'')}(\xi')|^2d\xi'
$$

Alberto Ruiz (UAM) An old fashion course. Luminy April 201 Inverse scattering and Calderón's problem. Tools: a priori estima

同→ ∢目→ ∢目→ →目→ りα∩

$$
= \int_{\mathbf{R}^{n-d}} |F(x'', \xi')|^2 d\xi' = \int_{\mathbf{R}^{n-d}} |\hat{g}(\xi')|^2 a(\xi')^2 d\xi' \leq C \|g\|_{L^2(M)}^2.
$$

$$
\frac{1}{R^d} \int_{B_R} |u(x)|^2 d\xi' dx'' \leq
$$

$$
\frac{1}{R^d} \int_{[-R, R]^d} \int_{\mathbf{R}^{n-d}} |u(x', x'')|^2 d\xi' dx'' \leq C \|g\|_{L^2(M)}^2
$$

Corollary

Assume
$$
g \in L^2(S^{n-1})
$$
 and let us define

$$
u(x) = \int_{S^{n-1}} e^{ik\theta \cdot x} g(\theta) d\sigma(\theta).
$$

Then

$$
\||v\||_*^2 := \sup_{R \geq 0} \frac{1}{R} \int_{|x| < R} |u(x)|^2 \, dx \leq C k^{n-1} \|g\|_{L^2(S^{n-1})}^2. \tag{7}
$$

 \Box

Theorem

Assume $u \in L^2_{loc} \cap \mathcal S'$ such that

$$
\limsup_{R\to\infty}\frac{1}{R^d}\int_{|x|
$$

Let Ω be an open set in \mathbf{R}^n such that \hat{u} restricted to Ω , $g = \hat{u}_{|\Omega}$, is compactly supported in a \mathcal{C}^{∞} -submanifold M of codimension d, then $g \in L^2(M)$, and furthermore

$$
\int_M |g|^2 d\sigma \leq C \limsup_{R \to \infty} \frac{1}{R^d} \int_{|x| < R} |u(x)|^2 dx. \tag{8}
$$

 200

Alberto Ruiz (UAM) An old fashion course. Luminy April 201 Inverse scattering and Calderón's problem. Tools: a priori estima

The mollification

Lemma

Let $u \in L^2_{loc}\cap \mathcal S'$ and $\chi \in \mathcal C^\infty_0$ supported on $B(0,1)$, and denote $g_{\epsilon} = \hat{u}(\cdot) \star \epsilon^{-n} \chi(\cdot/\epsilon)$. Then, for fixed $d > 0$, we have

$$
\|g_{\epsilon}\|_{L^2}^2 \leq C_d(\chi) \epsilon^{-d} K_d(\epsilon),
$$

where $K_d(\epsilon) = \sup_{R\epsilon \geq 1} \frac{1}{R^d} \int_{|x| < R} |u(x)|^2 dx$ and $C_d(\chi)$ only depends on χ .

$$
\|g_{\epsilon}\|_{L^2}^2 = \|u(\cdot)\hat{\chi}(\epsilon(\cdot))\|_{L^2}^2 = \big(\int_{|\epsilon x| \leq 1} + \sum_{j=1}^{\infty} \int_{2^{j-1} \leq |\epsilon x| \leq 2^j} \big|u(x)\hat{\chi}(\epsilon x)\big|^2 dx
$$

$$
\leq \sup_{|y|\leq 1} \hat{\chi}(y)^2 \int_{|\epsilon x|\leq 1} |u(x)|^2 + \sum_{j=1}^{\infty} \sup_{2^{j-1} \leq |y| \leq 2^j} \hat{\chi}(y)^2 \int_{2^{j-1} \leq |\epsilon x| \leq 2^j} |u(x)|^2
$$

Alberto Ruiz (UAM) An old fashion course. Luminy April 201 Inverse scattering and Calderón's problem. Tools: a priori estima

$$
\leq \epsilon^{-d} \big(\sup_{|y| \leq 1} |\widehat{\chi}(y)|^2 \epsilon^d \int_{|\epsilon x| \leq 1} |u(x)|^2 dx \n+ \sum_{j=1}^{\infty} \sup_{2^{j-1} \leq |y| \leq 2^j} |\widehat{\chi}(y)|^2 2^{jd} \cdot \sup_{j=1,2,...} \frac{2^j}{\epsilon} \bigg|^{-d} \int_{2^{j-1} \leq |\epsilon x| \leq 2^j} |u(x)|^2 dx \n\leq \epsilon^{-d} C_d(\chi) \sup_{\epsilon R \geq 1} R^{-d} \int_{B(0,R)} |u(x)|^2 dx.
$$

where

$$
C_d(\chi) = \sup_{|y| \le 1} |\widehat{\chi}(y)|^2 + \sum_{j=1}^{\infty} \sup_{2^{j-1} \le |y| \le 2^j} |\widehat{\chi}(y)|^2 2^{jd}.
$$

Going back to the proof of the theorem, let us see that g is an L^2 -density on M.

 QQ

曲

- 4 重 8 - 4 重 8

End of equivalence

Since g is supported on M, then g_{ϵ} is supported on $M_{\epsilon} = \{x \in \mathbf{R}^n : d(x, M) \leq \epsilon\}\;;$ since $u \in \mathcal{S}'$ then $g_{\epsilon} \to g$ en $\mathcal{S}'.$ Let us take a test functions $\psi \in \mathcal{C}_0^\infty$:

$$
|g(\psi)| = |\lim_{\epsilon \to 0} (g_{\epsilon})(\psi)| = \lim_{\epsilon \to 0} |\int_{M_{\epsilon}} (\hat{u} \star \chi_{\epsilon}(x))\psi(x) dx|
$$

\n
$$
\leq \lim_{\epsilon \to 0} (\int |g_{\epsilon}|^2 dx)^{1/2} (\int_{M_{\epsilon}} |\psi(x)|^2 dx)^{1/2}
$$

\n
$$
\leq \lim_{\epsilon \to 0} (\epsilon^{-d} \int_{M_{\epsilon}} |\psi(x)|^2 dx)^{1/2} (K_d(\epsilon) C_d)^{1/2},
$$

\nand hence, since $\epsilon^{-d} \int_{M_{\epsilon}} |\psi(x)|^2 dx \to \int_M |\psi(x)|^2 d\sigma(x)$, we have
\n
$$
|g(\psi)| \leq \lim \sup K(\epsilon)^{1/2} ||\psi||_{L^2(M)} C_d^{1/2},
$$

 $\epsilon \rightarrow 0$ this means that g is a function in $L^2(M)$ such that

$$
\int_M |g(\theta)|^2 d\sigma(\theta) \leq C_d \limsup_{\epsilon \to 0} K(\epsilon),
$$

The direct problem. Existence and estimates

Corollary

A solution of the homogeneous Helmholtz equation is a Herglotz wave function if and only if Hartman-Wilcox condition [\(4\)](#page-4-1) holds

Notice that the theorems give us an equivalence of $L^2(S^{n-1})$ -norm of the density with the norm $\|\cdot\|_*$ of the solution. Let us define the Besov space

$$
B_{s} = \{v \in L_{loc}^{2}: ||v||_{B_{s}} = \sum_{j=0}^{\infty} R_{j+1}^{s} (\int_{\Omega_{j}} |v|^{2} dx)^{1/2} < \infty\},
$$
 (9)

where $R_j=2^{j-1}$ if $j\geq 1,~R_0=0$ and $\Omega_j=\{\text{$x:R_j\leq |x|\leq R_{j+1}$}\}.$ The elements of the dual B^*_s are the functions $v \in L^2_{loc}$ with

$$
||v||_{B_s^*}^2 = \sup_{j=1,2...} R_j^{-2s} \int_{\Omega_j} |v|^2 dx \le \infty
$$
 (10)

A . . 2 . . 2 .

This norm is equivalent to $|| \cdot |||_*$ with $2s = d$, when the supremum there is taken over $R > 1$.

Corollary

Let M be a C^1 -submanifold in \mathbb{R}^n of codimension d and K a compact contained in M. Then the operator given by the restriction of the Fourier transform to K, defined for $v \in S$ as

$$
\mathcal{T}(v) = \hat{v}_{|K} \in L_K^2(d\sigma) \tag{11}
$$

can be extended by continuity to an onto map from $B_{d/2}$ to $L_K^2(d\sigma)$.

The adjoint of \mathcal{T} , defined for $\psi\in L^2_\mathcal{K}(d\sigma)$ by

$$
T^*(\psi) = \widehat{(\psi d\sigma)} \in B^*_{d/2} \tag{12}
$$

 Ω

is one to one from [\(8\)](#page-8-0) and has closed range, hence T is onto, see [Rudin,Thm 4.15.] → イラン イヨン イラン

This corollary is a dual trace theorem at the end point, which means that it gives a substitute of the Sobolev space $W^{d/2,2}({\bf R}^n)$ in order to obtain traces in L^2 when restricted to a submanifold of codimension d. To compare with, let us recall the classical trace theorem in Sobolev spaces.

Theorem

Let M be a \mathcal{C}^{∞} manifold of codimension d and $\alpha > d/2$, then there exists a bounded operator

$$
\tau: W^{\alpha,2}(\mathbf{R}^n) \to W^{\alpha-d/2,2}(M),
$$

such that for $\psi\in\mathcal{C}^\infty_0$, $\tau(\psi)=\psi_{|_M}.$ This operator is called the trace operator on M and $\tau(f)$ the trace of f on M which we also denote by $f_{|M}$.

母 トマミト マミト

Dual trace theorem

Given
$$
\epsilon \ge 0
$$
, write $\alpha = d/2 + \epsilon$. Then for every $\epsilon \ge 0$,
\n
$$
\|\tau(g)\|_{L^2(M)} \le C \|g\|_{W^{d/2+\epsilon,2}(R^n)} = \|\hat{g}\|_{L^2((1+|\xi|^2)^{d/2+\epsilon}d\xi)}.
$$
\nIf we take $\hat{g} = f$, we obtain that

$$
\|\tau(\hat{f})\|_{L^2(M)}\leq C\|f\|_{L^2((1+|x|^2)^{d/2+\epsilon}dx)}.
$$

This means that the restriction operator

$$
Tf = \hat{f}_{|M} : L^{2}(1+|x|^{2})^{d/2+\epsilon} \to L^{2}(M)
$$
 (13)

and its adjoint

$$
\mathcal{T}^*(\psi) = \widehat{(\psi d\sigma)}\tag{14}
$$

$$
||T^*(\psi)||_{L^2((1+|\xi|^2)^{-d/2-\epsilon}d\xi)} \leq C ||\psi||_{L^2(M)}.
$$
 (15)

This inequality can also be written as

$$
\sup_{R\geq 1}\frac{1}{R^{d/2+\epsilon}}\int_{B(0,R)}|T^*(\psi)(\xi)|^2d\xi\leq C\|\psi\|_{L^2(M)}^2.\tag{16}
$$

Estimate [\(6\)](#page-5-1) is the above inequality for $\epsilon = 0$. \equiv 240

Stein-Tomas operator

Theorem

$$
T^*T(f) = \widehat{d\sigma} \star f : B_{d/2} \to B_{d/2}^*.
$$
 (17)

In the case $M = \mathbf{S}^{n-1}$ this operator is related to the imaginary part of the free resolvent. Formula [\(17\)](#page-16-1) gives a factorization of this imaginary part when considered as an operator from some space to its dual, by inserting the intermediate $L^2(\mathsf{S}^{n-1})$. Let us define

$$
I_k f(x) = \frac{1}{k} (\widehat{d\sigma_k} * f)(x), \qquad (18)
$$

where $d\sigma_k$ is the measure on the sphere of radius k. Consider norm $\|\cdot\|$ and which is the dual of

$$
||u||_{\tilde{B}_{1/2}} = \sum_{-\infty}^{\infty} \left(R_j \int_{\Omega_j} |u(x)|^2 dx \right)^{1/2}, \qquad (19)
$$

Itallows dilatio[n](#page-17-0)s as opposite to $sup_{R>1}$ | K[en](#page-15-0)i[g,](#page-17-0) [Po](#page-16-0)n[ce](#page-0-0) [an](#page-42-0)[d](#page-0-0) [Ve](#page-42-0)[ga](#page-0-0) QQ Alberto Ruiz (UAM) An old fashion course. Luminy April 201 Inverse scattering and Calderón's problem. Tools: a priori estimate

Corollary

There exists a constant $C > 0$ uniform in k such that

$$
\| |I_k f|||_* \leq C k^{-1} \|f\|_{\tilde{B}_{1/2}} \tag{20}
$$

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶ ...

 200

Proof: We reduce to the case $k = 1$, noticing that for $u_k(x) = u(x/k)$, we have

$$
|||f_k|||_* = k^{(n-1)/2}|||f|||_*,
$$

$$
||f_k||_{\tilde{B}_{1/2}} = k^{(n+1)/2}||f||_{\tilde{B}_{1/2}}
$$

and

$$
(I_k f)(x/k) = k^{-2} I_1(f_k)(x).
$$

The case $k = 1$ can be proved from Hartman-Wilcox, duality and T [∗]T-argument.

The Restriction of the Fourier Transform

Given $f \in L^p(\mathbf{R}^n)$ and a submanifold M in \mathbf{R}^n , when does it make sense to restrict \hat{f} to M in the sense of this restriction being a function in $L^t(M)$? We are going to study the case $M={\bf S}^{n-1}$, starting with $t = 2$. It is important to remark that in these theorems the positiveness of curvature of the sphere plays a fundamental role. We start will the dual theorem

Theorem (Extension theorem)

Let ψ be an $L^2(\mathbf{S}^{n-1})$ density, then its extension $T^*\psi = \bar{\psi}d\bar{\sigma}$ is in $\mathsf{L}^q(\mathsf{R}^n)$, for $q\geq \frac{2(n+1)}{n-1}$ $\frac{(n+1)}{n-1}$, i.e. if q satisfies the relation

$$
1/2 - 1/q \ge 1/(n+1). \tag{21}
$$

Furthermore we have the estimate

$$
||T^*\psi||_{L^q(\mathbf{R}^n)} \leq C||\psi||_{L^2(S^{n-1})}.
$$
 (22)

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

 \equiv

The Restriction theorem

Corollary (Stein-Tomas)

Let $f \in L^p(\mathbf{R}^n)$ where $p \leq \frac{2(n+1)}{n+3}$ we can define $\mathcal{T}f = \hat{f}_{|_{S^{n-1}}}$ as a L^2 density and it holds

$$
||\mathit{Tf}||_{L^{2}(\mathsf{S}^{n-1})} \leq C||f||_{L^{p}}
$$
\n(23)

Remark 1: The range of q is sharp: Take a non negative function $\phi \in \mathcal{C}_0^\infty$ and construct $(\phi_\delta)(\xi',\xi_n) = \phi(\frac{\xi'}{\delta})$ $\frac{\xi'}{\delta}, \frac{\xi_n-e_n}{\delta^2}$ $\frac{(-e_n)}{\delta^2}$). Then

$$
\widehat{\phi_{\delta}}(x) = e^{i\delta^2 x_n} \delta^{n+1} \phi(\delta x', \delta^2 x_n)
$$

and hence $\|\mathcal{T}\phi_\delta\|_{L^t(S^{n-1})} = \|\phi_\delta\|_{L^t(S^{n-1})} \geq C\delta^{(n-1)/t}$ and $\|\widetilde{\phi}_{\delta}\|_{L^p} \leq C \delta^{n+1-(n+1)/p}$, where $p' = q$. Assume that

$$
\|T\psi\|_{L^t(\mathbf{S}^{n-1})}\leq C\|\psi\|_{L^p},\qquad(24)
$$

and take $\psi = \widehat{\phi_{\delta}}$, then if $\delta \to 0$, we obtain the necessary condition $\frac{1}{(n+1)}$ /q = $\frac{n+1}{1-\frac{1}{n}}$ $(\frac{1}{p}) < (n-1)/t$. 000

Remark 2:There is another necessary condition that comes from the evaluation of $\mathcal{T}^*(1)$ in term of Bessel function given by Funk-Ecke formula. That is the constrain $q > 2n/(n-1)$. The sufficiency of $(n+1)/q < (n-1)/t$, together with $q > 2n/(n-1)$ to have inequality [\(24\)](#page-19-0) is known as the "Restriction conjecture", an open question in classical Fourier Analysis. Notice that in the particular case $t = 2$ we obtain the range of the Corollary. **Remark 3:** We can write for ω_n the measure of the sphere:

$$
|\widehat{\psi d\sigma}(\xi)|=\int_{\mathbf{S}^{n-1}}e^{i x\cdot\xi}\psi(x)d\sigma(x)|\leq \|\psi\|_{L^2(\mathbf{S}^{n-1})}^{1/2}\omega_n^{1/2}.
$$

Then it suffices to prove the theorem at the end point $q=\frac{2(n+1)}{n-1}$ $\frac{(n+1)}{n-1}$.

同 ▶ イヨ ▶ イヨ ▶ │

 Ω

Estimate of the mollification with resolution ϵ of a measure on the sphere with density f .

Lemma

Let
$$
\chi \in S
$$
, denote $d\sigma_{\epsilon} = f(\cdot)d\sigma(\cdot) \star \epsilon^{-n}\chi(\cdot/\epsilon)$, where $f \in L^{\infty}(\mathbf{S}^{n-1})$ then

$$
\mathsf{sup}_x |d\sigma_\epsilon(x)| \leq C\epsilon^{-1}
$$

Proof: We make a reduction to the case where χ is compactly supported("Schwartz tails argument)": Take a \mathcal{C}^∞_0 partition of unity in \mathbf{R}^n such that

$$
\sum_{j=0}^{\infty}\psi_j(x)=1,
$$

where ψ_{0} is supported in $B(0,1)$ and $\psi_j = \psi(2^{-j}x)$ for $j>0$, and ψ is supported in $1/2 \le |x| \le 2$.

オートリング きょうしょう

We take

$$
\sum_{j=0}^{\infty} \psi_j(\epsilon^{-1}x) = 1.
$$

Now write

$$
d\sigma_{\epsilon}(x) = d\sigma(\cdot) \star \epsilon^{-n} \sum \psi_j(\epsilon^{-1}(\cdot)) \chi(\cdot/\epsilon),
$$

Notice that the jth term, $j > 0$ is an integral on the sphere of radius 1 centered at x of a function supported on the annulus $2^{j-1}\epsilon \le |y| \le 2^j\epsilon.$ In this annulus, since χ is rapidly decreasing, we have:

$$
|\chi(\epsilon^{-1}x)| \leq \frac{C_N}{(1+2^j)^N},
$$

Hence

$$
|d\sigma(\cdot)\star\epsilon^{-n}\psi_j(\epsilon^{-1}(\cdot))\chi(\cdot/\epsilon)(x)|\leq C_N\frac{(2^j\epsilon)^{n-1}}{(1+2^j)^N}\epsilon^{-n}.
$$

By taking N big enough, the sum in j converges bounded by $C\epsilon^{-1}$. (The term $j = 0$, satisfies trivially the inequ[alit](#page-21-0)[y\)](#page-23-0). 000

Case the case $L^2 \rightarrow L^{p'}$, for $p' > \frac{2(n+1)}{n-1}$ $\frac{n+1}{n-1}$, i.e. $1/2-1/p' > 1/(n+1)$. T [∗]T-argument: Stein-Tomas operator: $f \rightarrow \widehat{d\sigma} * f = K(f)$ bounded from $L^p \rightarrow L^{p'}$: Facts $\widehat{d\sigma}(x) = C_n \frac{J_{\frac{n-2}{2}}(|x|)}{|x|^{\frac{n-2}{2}}}$ $|x| \frac{n-2}{2}$ Asymptotics and dyadic decomposition. $K_i(f) = \psi_i d\sigma * f$ <code>Interpolation</code> $\|K_{j}\|_{L^{1}\to L^{\infty}}\leq C 2^{-j(n-1)/2}$ and $\|K_{j}\|_{L^{2}\to L^{2}}\leq C 2^{j}$ Geometric series.

 Ω

It follows by dilations:

Corollary

If v is a Herglotz wave function corresponding to the eigenvalue k^2 with density g, then for

$$
1/2-1/q\geq 1/(n+1)
$$

it holds

$$
||v||_{L^q} \leq C k^{-n/q} ||g||_{L^2(S^{n-1})}.
$$

 (25)

 200

Corollary

Let
$$
k > 0
$$
, and consider $I_k f(x) = \frac{1}{k} (\widehat{d\sigma_k} * f)(x)$. Then, for

$$
\frac{1}{p} - \frac{1}{q} \ge \frac{2}{n+1} \text{ and } \frac{1}{p} + \frac{1}{q} = 1,
$$

we have $\|I_k f\|_{L^q} \leq C k^{n(\frac{1}{p}-\frac{1}{q})-2} \|f\|_{L^p}$

Transmision eigenvalues

Alberto Ruiz (UAM) An old fashion course. Luminy April 201 Inverse scattering and Calderón's problem. Tools: a priori estima

 \Box

 \mathbf{h} 4 重 \sim Έ $2Q$

∍

Estimates for the free resolvent

The outgoing solution of the equation in R^n

$$
(\Delta + k^2)u = f \tag{26}
$$

is the function

$$
u(x) = \int \Phi(x-y)f(y)dy.
$$

In the F.T. side the outgoing fundamental solution $\Phi(x)$ is

$$
\hat{\Phi}(\xi) = (-|\xi|^2 + k^2 + i0)^{-1}, \tag{27}
$$

In terms of the homogeneous distributions of degree -1 , We can obtain the expression from the one variable formula

$$
\lim_{\epsilon \to 0+} (t + i\epsilon)^{-1} = \rho v \frac{1}{t} + i\pi \delta,
$$

extended to the R^n -function $t = H(\xi)$ as far as we can take locally H as a coordinate function in a local patch of a neighborhood in **R**ⁿ at any point ξ_0 for which $H(\xi_0) = 0$. 2990

Proposition

Let $H: \mathbf{R}^n \to \mathbf{R}$ such that $|\bigtriangledown H(\xi)| \neq 0$ at any point where $H(\xi) = 0$, then we can take the distribution limit

$$
(H(\xi) + i0)^{-1} = \lim_{\epsilon \to 0+} (H(\xi) + i\epsilon)^{-1}.
$$
 (28)

$$
(H(\xi) + i0)^{-1} = \rho v \frac{1}{H(\xi)} + i\pi \delta(H) \tag{29}
$$

in the sense of the tempered distributions.

The distribution $\delta(H)$ is defined as

$$
\delta(H)(\psi) = \int_{H(\xi)=0} \psi(\xi)\omega(\xi),
$$

where ω is any $(n-1)$ -form such that $\omega \wedge dH = d\xi$. It is easily seen, from the change of variable formula, that this integral does not depends on the choice of the form ω . The existence of such ω can be proved by using local coordinates in R^n adapted to the manifold $H(\xi) = 0$. QQ スラメスラメー

Alberto Ruiz (UAM) An old fashion course. Luminy April 201 Inverse scattering and Calderón's problem. Tools: a priori estima

Limiting absorption principle

Let α any function which does not vanish at the points ξ with $H(\xi) = 0$, then

$$
\delta(\alpha H) = \alpha^{-1} \delta(H).
$$

We can choose an orthonormal moving frame on the tangent plane to $H(\xi) = 0$, namely $\omega_1, ..., \omega_{n-1}$, for this frame we have $\omega_1\wedge...\wedge\omega_{n-1}\wedge\frac{dH}{|\bigtriangledown H|}=d\xi$, it follows that $\delta(|\bigtriangledown H|^{-1}H)$ is the measure $d\sigma$ induced by ${\bf R}^n$ on the hypersurface $H(\xi) = 0$ and hence

$$
\delta(H)=|\bigtriangledown H|^{-1}d\sigma.
$$

Let $H(\xi) = -|\xi|^2 + k^2$, then

Lemma

$$
(H(\xi)+i0)^{-1} = \lim_{s\downarrow 0} (-|\xi|^2 + k^2 + is)^{-1} = p\nu \frac{1}{H(\xi)} + \frac{i\pi}{2k} d\sigma
$$
 (30)

Alberto Ruiz (UAM) An old fashion course. Luminy April 201 Inverse scattering and Calderón's problem. Tools: a priori estima

$$
R_{+}(\kappa^{2})(f)(x) = (\Delta + k^{2} + i0)^{-1}(f)(x)
$$

= $p.v. \int_{\mathbf{R}^{n}} e^{ix \cdot \xi} \frac{\hat{f}(\xi)}{-|\xi|^{2} + k^{2}} d\xi + \frac{i\pi}{2k} \widehat{d}\sigma * f(x).$ (31)

Estimates are given by estimates of the model $I_k f = \frac{i\pi}{2k}$ $rac{1\pi}{2k}d\sigma * f(x).$ Retriction Thm for the F.T. \rightarrow Selfdual L^p-estimate [KRS]

Theorem For 2 $\frac{2}{n} \geq \frac{1}{p}$ $\frac{1}{p} - \frac{1}{q}$ $\frac{1}{q} \geq \frac{2}{n+1}$ $\frac{2}{n+1}$ and $\frac{1}{p} + \frac{1}{q}$ $\frac{1}{q} = 1,$ we have $\|R_+(k^2)(f)\|_{L^q}\leq C k^{n(\frac{1}{p}-\frac{1}{q})-2}\|f\|_{L^p}$

End point dual trace thm \rightarrow Selfdual Besov estimate [AH-KPV]

Theorem

There exists a constant $C > 0$ uniform in k such that

$$
\sup_{R} \frac{1}{R} \int_{B(0,R)} |R_{+}(k^{2})(f)|^{2} \leq C k^{-1} \|f\|_{\tilde{B}_{1/2}}
$$
 (32)

Example: Agmon-Hormander estimate $W(x)=(1+|x|^2)^{-1/2-\epsilon}$ The model is $I_k = T^*T$. Hopefully [RV]

Theorem Let 1 $\frac{1}{n} \geq \frac{1}{p}$ $\frac{1}{p} - \frac{1}{2}$ $\frac{1}{2} \geq \frac{1}{n+1}$ $\frac{1}{n+1}.$ Then $||R_{+}(\kappa^{2})(f)||_{\tilde{B}^{*}_{1/2}} \leq k^{n(\frac{1}{p}-\frac{1}{2})-\frac{3}{2}}||f||_{L^{p}}$ (33)

Advition

Selfdual L^p. Proof

The restriction $\frac{2}{p} \geq \frac{1}{p} - \frac{1}{q}$ $\frac{1}{q}$ needs to be added, since the Fourier multiplier $(-|\xi|^2+k^2)^{-1}$ behaves as a Bessel potential of order 2 when $|\xi| \to \infty$.

Lemma (Mollification)

Let $\chi \in \mathcal{S}$, and

$$
P_{\epsilon}(\xi) = \rho v \frac{1}{-|(\cdot)|^2 + 1} * \epsilon^{-n} \chi(\cdot/\epsilon)(\xi),
$$

then

 $|P_\epsilon(\xi)|\leq \mathsf{C}\epsilon^{-1}$

$$
P_{\epsilon}(\xi) = -p \nu \left(\int_{1-\epsilon \le |\eta| \le 1+\epsilon} + \int_{1-\epsilon > |\eta|} + \int_{|\eta| > 1+\epsilon} \right) \chi_{\epsilon}(\xi - \eta) \frac{1}{|\eta|^2 - 1} d\eta
$$

= $I_1 + I_2 + I_3$.

Alberto Ruiz (UAM) An old fashion course. Luminy April 201 Inverse scattering and Calderón's problem. Tools: a priori

Let us write

$$
I_1 = \lim_{\delta \to 0} \int_{\delta \leq |1 - |\eta| \leq \epsilon} \chi_{\epsilon}(\xi - \eta) \frac{1}{|\eta|^2 - 1} d\eta
$$

=
$$
\lim_{\delta \to 0} (\int_{1 - \epsilon}^{1 - \delta} + \int_{1 + \delta}^{1 + \epsilon}) \int_{S^{n-1}} \chi_{\epsilon}(\xi - r\theta) \frac{1}{r^2 - 1} r^{n-1} d\sigma(\theta),
$$

Changing $r = 2 - s$ in the second integral we obtain

$$
I_1=\lim_{\delta\to 0}\int_{1-\epsilon}^{1-\delta}F(r,\xi)(r-1)^{-1}dr,
$$

where

$$
F(r,\xi) = \int_{S^{n-1}} \chi_{\epsilon}(\xi - r\theta) \frac{r^{n-1}}{(r+1)} d\sigma(\theta)
$$

$$
- \int_{S^{n-1}} \chi_{\epsilon}(\xi - (2-r)\theta) \frac{(2-r)^{n-1}}{(3-r)} d\sigma(\theta)
$$
 (34)

 4.17

押り メミメ メミメー

 \equiv

 299

Alberto Ruiz (UAM) An old fashion course. Luminy April 201 Inverse scattering and Calderón's problem. Tools: a priori estima

If we observe that $F(1,\xi) = 0$, we may write by the mean value theorem

$$
|\int_{1-\epsilon}^{1-\delta} F(r,\xi)(r-1)^{-1}dr| \leq \epsilon \sup_{1-\epsilon \leq r \leq 1} |\frac{\partial F}{\partial r}(r,\xi)|. \qquad (35)
$$

The radial derivative of the first integral in the definition of F , [\(34\)](#page-32-0), is given by

$$
\frac{\partial}{\partial r} \left(\frac{r^{n-1}}{r+1} \right) \int_{S^{n-1}} \chi_{\epsilon}(\xi - r\theta) d\sigma(\theta) + \frac{r^{n-1}}{r+1} \int_{S^{n-1}} \theta \cdot \nabla \chi_{\epsilon}(\xi - r\theta) d\sigma(\theta).
$$

The second of these integrals can be written as

$$
\epsilon^{-1}\sum_{i=1}^n\frac{r^{n-1}}{r+1}\int_{S^{n-1}}\theta_i(\frac{\partial}{\partial x_i}\chi)_{\epsilon}(\xi-r\theta)d\sigma(\theta),
$$

both integrals are mollifications with resolution ϵ of the measures $d\sigma(\theta)$ and $\theta_i d\sigma(\theta)$, which, from lemma [8,](#page-21-1) are bounded by $C(\chi)\epsilon^{-1}$. We have then $\left|\frac{\partial F}{\partial r}\right|$ $\frac{\partial F}{\partial r}(r,\xi)|\leq C\epsilon^{-2},$ and hence $|I_1| \leq C\epsilon^{-1}.$ $\begin{array}{c} 4 \times 4 \times 10^6 \text{ N} & 4 \times 10^6 \text{ N} \\ 2 \times 10^6 \text{ N} & 2 \times 10^6 \text{ N} \end{array}$ \Box \Box

Proof of selfdual L^p -estimate

Alberto Ruiz (UAM) An old fashion course. Luminy April 201 Inverse scattering and Calderón's problem. Tools: a priori estima

 \Box

一本 重 下

 \sim

э

 299

∍

Uniform Sobolev estimate

Theorem

[KRS] Let $a \in \mathbb{C}^n$ and $b \in \mathbb{C}$ such that $\Re b + |\Im a|^2/4 \neq 0$, then for any $u \in C_0^{\infty}$, there exists C independent of a and b such that, for $1/p-1/q \in [2/(n+1), 2/n]$

 $||u||_q \leq C |\Re b + |\Im a|^2/4|^{(1/p-1/q)n/2-1} ||(\Delta + a \cdot \nabla + b)u||_p.$ (36)

It contains the Carleman estimate and also Fadeev operator estimate and for $1/p - 1/q = 2/n$ uniform Sobolev.

Corollary

Let $\rho \in \mathbf{C}^n$ such that $\rho \cdot \rho = 0$. Assume that $\frac{2}{n} \geq \frac{1}{p} - \frac{1}{q} \geq \frac{2}{n+1}$ if $n>2$ and $1>\frac{1}{p}-\frac{1}{q}\geq\frac{2}{3}$ $\frac{2}{3}$ if n $=$ 2, where $\frac{1}{p} + \frac{1}{q}$ $\frac{1}{q}=1$. Then there exists a constant C independent of ρ and f such that

$$
||f||_{L^{q}} \leq C|\rho|^{n(\frac{1}{p}-\frac{1}{q})-2} |(\Delta + \rho \cdot \nabla)f||_{L^{p}}
$$
(37)

Sketch of proof

1.

Theorem

Let $z \in \mathbf{C}$, p and q in the range of theorem and $u \in \mathcal{C}_0^\infty$ then there exists a constant C independent of z such that

$$
||u||_{q} \leq C|z|^{(1/p-1/q)n/2-1} ||(\Delta + z)u||_{p} \qquad (38)
$$

 \equiv

 200

∢ロト ∢母ト ∢ヨト ∢ヨト

Proof: Use Phragmen-Lindelöv maximum principle

Proposition

Let $F(z)$ analytic in the open half complex plane $\{Im z > 0\} = C_+$ and continuous in the closure. Assume that $|F(z)| \leq L$ in $\partial \mathbf{C}_+$ and that for any $\epsilon>0$ there exists C such that $|F(z)|\leq Ce^{\epsilon|z|}$ as $|z| \to \infty$ uniformly on the argument of z. Then $|F(z)| \leq L$ for any $z \in \mathbb{C}_{+}$.

 μ and ν in a dense class

$$
F(z) = z^{-(1/p-1/q)n/2+1} \int v(\Delta + z)^{-1} u
$$

= $z^{-(1/p-1/q)n/2+1} \int (-|\xi|^2 + z)^{-1} \hat{v}(\xi) \hat{u}(\xi) d\xi$,

Continuity: Limiting absorption principle.

Boundedness at the boundary, estimates for resolvent $F(z) \leq C ||u||_p ||v||_p.$

General case: Reduce by phase shifts, rotations and dilations to prove: There exists $C_2 > 0$ such that for any real numbers ϵ and β and any $u \in \mathcal{C}_0^\infty$

$$
||u||_q \leq C_2 ||(\Delta + \epsilon(\frac{\partial}{\partial y_1} + i\beta) \pm 1)u||_p.
$$
 (39)

Fourier multiplier

$$
(Tf)(\xi)=m(\xi)\hat{f}(\xi),
$$

where

$$
m(\xi) = (-|\xi|^2 \pm 1 + i\epsilon(\xi_1 + \beta))^{-1}, \qquad (40)
$$

End of proof

Alberto Ruiz (UAM) An old fashion course. Luminy April 201 Inverse scattering and Calderón's problem. Tools: a priori estima

4 0 8

◀ @ ▶ ◀ 듣 ▶ ◀ 듣

 $\,$ э

All estimates together

Alberto Ruiz (UAM) An old fashion course. Luminy April 201 Inverse scattering and Calderón's problem. Tools: a priori estima

Extensions and open problems

1. Wave equation (Klein-Gordon) [KRS] useful in Control Theory. 2. Morrey-Campanato clases $L^{\alpha,p}$, [ChS], [CR], [W], [RV]: $p > 1$, $\alpha < n/p$.

$$
\|V\|_{\alpha,p} = \sup_{x,R>0} R^{\alpha} (R^{-n} \int_{B(x,R)} |V(y)|^p)^{1/p}
$$

Case $\alpha = 2$, $p = n/\alpha$, $L^p = L^{\alpha, p}$. Uniform estimate

$$
||u||_{L^2(V)} \leq C||V||_{\alpha,p}^2 ||(\Delta + a\cdot \bigtriangledown + b)u||_{L^2(V^{-1})}
$$

Open range: $(\alpha = 2, 1 < p < (n - 1)/2)$ Remark: L^p-selfdual estimate

$$
||u||_{L^2(V)} \leq C||V||^2_{n/2}||(\Delta + a\cdot \bigtriangledown + b)u||_{L^2(V^{-1})}
$$

Kato-Stummel Class.

ാം

3. Resolvent: X-rays transform class (open problem)

$$
\|\n|V\|\n|_{X} = \sup_{x \in R^{n}, \omega \in S^{n-1}} \int_{0}^{\infty} V(x - t\omega) dt < \infty \tag{41}
$$

Radial case [BRV]

$$
k \| R_+(k^2) f \|_{L^2(V)} + \| \nabla R_+(k^2) f \|_{L^2(V)} \leq C \| V \|_X^2 \| f \|_{L^2(V^{-1})}
$$

Stein conjecture.

4. Uniform estimates for lower order perturbations: extension of [AH] [KPV], Nirenberg-Walker estimate 5. In Riemannian manifolds ([DsfKS]) Resolvent ,Carleman

Alberto Ruiz (UAM) An old fashion course. Luminy April 201 Inverse scattering and Calderón's problem. Tools: a priori estima

 Ω

High energy reconstruction

FIGURE 1. ξ belongs to spheres centered at $-\omega_i\theta_j$ with radii ω_j (Ewald spheres).

Alberto Ruiz (UAM) An old fashion course. Luminy April 201 Inverse scattering and Calderón's problem. Tools: a priori estima